Skip to main content

Effects of Alterations of Cell Size and Number on the Structure and Function of the Xenopus Laevis Nervous System

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 181))

Abstract

The evolution of the vertebrate central nervous system has involved increasing cell numbers and overall relative size, allometric changes in different brain regions, and quantitative and qualitative alterations in the interactions between different regions of the nervous system. The importance of genetic changes which alter the metrics of interactions between developing organ systems for evolutionary change has been stressed by Gould (1977). Yet relatively little evidence is available from experimental studies to support the idea that allometric changes, such as changes in cell size, cell number or the relative sizes of different organs within the vertebrate nervous system can cause qualitative as well as quantitative changes in structure and function. Recent advances in the genetics of Xenopus laevis have permitted us to investigate some of these effects. The results support the hypothesis that relatively simple alterations in cell size and numbers can cause both qualitative and quantitative changes in morphology and function of the nervous system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bogart, J. P., (1979). Evolutionary Implications of polyploidy in amphibians and reptiles, in: “Polyploidy: Biological Relevance”, W. H. Lewis, ed., Plenum Press, New York, 341–378.

    Google Scholar 

  • Conway, K., Feiock, K., and Hunt, R. K., (1980). Polyclones and patterns in growing Xenopus eye. Curr. Top. Develop. Biol, 15:217–317.

    Article  Google Scholar 

  • Cooke, J., and Gaze, R. M., (1983). The positional coding system in the early eye rudiments of Xenopus laevis, and its modification after grafting operations. J. Embryol. Exp. Morph. 77:53–71.

    PubMed  CAS  Google Scholar 

  • Fankhauser, G., (1955). The role of nucleus and cytoplasm, in: “Analysis of Development”, B. H. Willier, P. A. Weiss, and V. Hamburger, eds, W. B. Saunders, Philadelphia, 126–150.

    Google Scholar 

  • Fankhauser, G., Vernon, J. A., Frank, W. H., and Slack, W. V., (1955). Effect of size and number of brain cells on learning in larvae of the salamander, Triturus viridescens. Science 122:692–693.

    Article  Google Scholar 

  • Fawcett, J. W., and Willshaw, D. J., (1982). Compound eyes project stripes on the optic tectum in Xenopus. Nature 296:350–352.

    Article  PubMed  CAS  Google Scholar 

  • Fraser, S. E., (1983). Fiber optic mapping of the Xenopus visual system: shift in the retinotectal projection during development. Develop. Biol. 95:505–511.

    Article  PubMed  CAS  Google Scholar 

  • Gaze, R. M., Keating, M. J., Ostberg, A., and Chung, S.-H., (1979). The relationship between retinal and tectal growth in larval Xenopus: implications for the development of the retino-tectal projection. J. Embryol. Exp. Morph. 53:103–143.

    PubMed  CAS  Google Scholar 

  • Gould, S. J., (1977). “Ontogeny and Phylogeny”, Belknap Press, Cambridge.

    Google Scholar 

  • Gurdon, J. B., and Woodland, H. R., (1975). Xenopus, in: “Handbook of Genetics”, vol. 4, R. C. King, ed., Plenum Press, New York, 35–50.

    Chapter  Google Scholar 

  • Hollyfield, J. G., (1971). Differential growth of the neural retina in Xenopus laevis larvae. Develop. Biol. 24:264–286.

    Article  PubMed  CAS  Google Scholar 

  • Ide, C. F., Fraser, S. E., and Meyer, R. L., (1983). Eye dominance columns from an isogenic double nasal frog eye. Science 221:293–295.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, M., (1976). Histogenesis of the retina in the clawed frog with implications for the pattern of development of retinotectal connections. Brain Res. 103:541–545.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, M., (1978). “Developmental Neurobiology”, Plenum Press, New York.

    Google Scholar 

  • Kobel, H. R., (1981). Evolutionary trends in Xenopus(Anura Pipidae). Monitore zoologico italiano 8:119–131.

    Google Scholar 

  • Levine, R. and Jacobson, M., (1975). Discontinuous mapping of retina onto tectum innervated by both eyes. Brain Res. 98:172–176.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, R. L., (1982). Tetrodotoxin blocks the formation of ocular dominance columns and refined retinotopography in goldfish. Neurosci. Abstr. 8:436.

    Google Scholar 

  • Ohno, S., (1970). “Evolution by Gene Duplication”, Springer-Verlag, New York.

    Google Scholar 

  • Reinschmidt, D. C., Simon, S. J., Volpe, E. P., and Tompkins, R., (1979). Production of tetraploid and homozygous diploid amphibians by suppression of first cleavage. J. Exp. Zool. 210:137–143.

    Article  Google Scholar 

  • Sakaguchi, D. S., Murphey, R. K., Hunt, R. K., and Tompkins, R., in press. The development of retinal ganglion cells in a tetraploid strain of Xenopus laevis: a morphological study utilizing intracellular dye injection. J. Comp. Neurol.

    Google Scholar 

  • Scott, T. M., and Lazar, G., (1976). An investigation into the hypothesis of shifting neuronal relationships during development, J. Anat. 121:485–496.

    PubMed  CAS  Google Scholar 

  • Somogyi, P., Hodgson, A. J., and Smith, A. D., (1979). An approach to tracing neuron networks in the cerebral cortex and basal ganglia. Combination of golgi staining, retrograde transport of horse-radish peroxidase and anterograde degeneration of synaptic boutons in the same material. Neuroscience 4:1805–1852.

    Article  PubMed  CAS  Google Scholar 

  • Tompkins, R., and Krotoski-Gwozdziowski, D., (1983). Mutants, cell markers, and inbred lines of Xenopus laevis for developmental studies. Genetics 104:s69.

    Google Scholar 

  • Willshaw, D. J., Fawcett, J. W., and Gaze, R. M., (1983). The visuo-tectalprojections made by Xenopus “pies slice” compound eys. J. Embryol. Exp. Morph. 74: 29–45

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Tompkins, R., Szaro, B., Reinschmidt, D., Kaye, C., Ide, C. (1984). Effects of Alterations of Cell Size and Number on the Structure and Function of the Xenopus Laevis Nervous System. In: Lauder, J.M., Nelson, P.G. (eds) Gene Expression and Cell-Cell Interactions in the Developing Nervous System. Advances in Experimental Medicine and Biology, vol 181. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4868-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4868-9_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4870-2

  • Online ISBN: 978-1-4684-4868-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics