Skip to main content

Nonmammalian Psychosexual Differentiation

  • Chapter
Reproduction

Part of the book series: Handbook of Behavioral Neurobiology ((HBNE,volume 7))

Abstract

Nonmammalian vertebrates have traditionally played a significant role in the study of morphological sexual differentiation, but they have been relatively neglected in the study of behavioral sexual differentiation (psychosexual differentiation). Several recent developments, however, have sparked new interest in other vertebrate classes. These include the discovery of gross anatomical sexual dimorphism in songbird brains (Nottebohm and Arnold, 1976), the possibility of major species or class differences in the pattern of psychosexual differentiation (Adkins-Regan, 1981), and a generally greater tendency to view reproductive physiology and behavior as part of overall reproductive strategies to be explained within an evolutionary/ecological context. It is also becoming apparent that certain nonmammalian species are potentially very valuable as models for studying the role of hormones in brain and behavioral development, in part because they lack some problems inherent in mammals. For example, most birds, fish, and amphibians have no external copulatory organs, and so the effects of hormones administered early in life on adult copulatory behavior are not confounded by alterations in copulatory organs. In egg-laying species, there is no maternal gestation to complicate treatments given during embryonic life. Many nonmammalian species are sufficiently independent of the parents at birth or hatching so that they can be easily reared without parents; thus, a confound is avoided wherein the parents behave differently toward hormone-treated and control offspring (as has been shown to happen in rats, C. L. Moore, 1982).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adkins, E. K. Functional castration of the female Japanese quail. Physiology and Behavior, 1973, 10, 619.

    Google Scholar 

  • Adkins, E. K. Electrical recording of copulation in quail. Physiology and Behavior, 1974, 13, 475.

    Google Scholar 

  • Adkins, E. K. Hormonal basis of sexual differentiation in the Japanese quail. Journal of Comparative and Physiological Psychology, 1975, 89, 61.

    PubMed  CAS  Google Scholar 

  • Adkins, E. K. Embryonic exposure to an antiestrogen masculinizes behavior of female quail. Physiology and Behavior, 1976, 17, 357.

    PubMed  CAS  Google Scholar 

  • Adkins, E. K. Effect of embryonic treatment with estradiol or testosterone on sexual differentiation of the quail brain: Critical period and dose-response relationships. Neuroendocrinology,1979, 29,178185.

    Google Scholar 

  • Adkins, E. K., and Adler, N. T. Hormonal control of behavior in the Japanese quail. Journal of Comparative and Physiological Psychology, 1972, 81, 27.

    PubMed  CAS  Google Scholar 

  • Adkins, E. K., and Nock, B. Behavioral responses to sex steroids of gonadectomized and sexually regressed quail. Journal of Endocrinology, 1976, 68, 49.

    PubMed  CAS  Google Scholar 

  • Adkins, E. K., and Pniewski, E. E. Control of reproductive behavior by sex steroids in male quail. Journal of Comparative and Physiological Psychology, 1978, 92, 1169–1178.

    CAS  Google Scholar 

  • Adkins, E. K., and Schlesinger, L. Androgens and the social behavior of male and female lizards, Anolis carolinensis. Hormones and Behavior, 1979, 13, 139–152.

    CAS  Google Scholar 

  • Adkins-Regan, E. Early organizational effects of hormones: An evolutionary perspective. In N. T. Adler (Ed.), Neuorendocrinology of Reproduction. New York: Plenum Press, 1981.

    Google Scholar 

  • Adkins-Regan, E. Sexual differentiation of behavior in the zebra finch. Paper presented at the Conference on Reproductive Behavior, Pittsburgh, June 1984.

    Google Scholar 

  • Adkins-Regan, E. Exposure of embryos to an aromatization inhibitor increases copulatory behaviour of male quail. Behavioural Processes,in press.

    Google Scholar 

  • Adkins-Regan, E., Pickett, P., and Koutnik, D. Sexual differentiation in quail: Conversion of androgen to estrogen mediates testosterone-induced demasculinization of copulation but not other male characteristics. Hormones and Behavior, 1982, 16, 259–278.

    PubMed  CAS  Google Scholar 

  • Allee, W. C., and Collias, N. The influence of estradiol on the social organization of flocks of hens. Endocrinology, 1940, 27, 87.

    CAS  Google Scholar 

  • Armstrong, C. N., and Marshall, A. J. (Eds.). Intersexuality in Vertebrates Including Man. London: Academic Press, 1964.

    Google Scholar 

  • Arnold, A. P. Behavioral Effects of Androgen in Zebra Finches (Poephila guttata) and a Search for Its Sites of Action. Ph.D. dissertation, Rockefeller University, 1974.

    Google Scholar 

  • Arnold, A. P. The effects of castration and androgen replacement on song, courtship, and aggression in zebra finches (Poephila guttata). Journal of Experimental Zoology, 1975a, 191, 309–325.

    PubMed  CAS  Google Scholar 

  • Arnold, A. P. The effects of castration on song development in zebra finches (Poephila guttata). Journal of Experimental Zoology, 191, 1975b, 261–277.

    PubMed  CAS  Google Scholar 

  • Arnold, A. P., and Saltiel, A. Sexual difference in pattern of hormone accumulation in the brain of a songbird. Science, 1979, 205, 702–704.

    PubMed  CAS  Google Scholar 

  • Aronson, L. R. Reproductive and parental behavior. In M. E. Brown (Ed.), Physiology of Fishes, Vol. 2. New York: Academic Press, 1957.

    Google Scholar 

  • Atz, J. W. Intersexuality in fishes. In C. N. Armstrong and A. J. Marshall (Eds.), Intersexuality in Vertebrates Including Man. London: Academic Press, 1964.

    Google Scholar 

  • Baggerman, B. Hormonal control of reproductive and parental behavior in fishes. In E. J. W. Barrington and C. B. Jorgensen (Eds.), Perspectives in Endocrinology: Hormones in the Lives of Lower Vertebrates. London: Academic Press, 1968.

    Google Scholar 

  • Balthazart, J., and Schumacher, M. Testosterone metabolism and sexual differentiation in quail. In J. Balthazart, E. Pröve, and R. Gilles (Eds.), Hormones and Behaviour in Higher Vertebrates. Berlin: Springer-Verlag, 1983.

    Google Scholar 

  • Barfield, R. J. Activation of copulatory behavior by androgen implanted into the preoptic area of the male fowl. Hormones and Behavior, 1969, 1, 37.

    CAS  Google Scholar 

  • Beach, F. A. Hormonal factors controlling the differentiation, development, and display of copulatory behavior in the ramstergig and related species. In E. Tobach, L. R. Aronson, and E. Shaw (Eds.), The Biopsychology of Development. New York: Academic Press, 1971.

    Google Scholar 

  • Beach, F. A., and Inman, N. G. Effects of castration and androgen replacement on mating in male quail. Proceedings of the National Academy of Sciences, 1965, 54, 1426.

    CAS  Google Scholar 

  • Beatty, R. A. Chromosome deviations and sex in vertebrates. In C. N. Armstrong and A. J. Marshall (Eds.), Intersexuality in Vertebrates Including Man. London: Academic Press, 1964.

    Google Scholar 

  • Beatty, R. A. Genetic basis for the determination of sex. Philosophical Transactions of the Royal Society (London) B, 1970, 259, 3.

    CAS  Google Scholar 

  • Becker, P., Roland, H., and Reinboth, R. An unusual approach to experimental sex inversion in the teleost fish, Betta and Macropodus. In R. Reinboth (Ed.), Intersexuality in the Animal Kingdom. New York: Springer-Verlag, 1975.

    Google Scholar 

  • Benoff, F. H. Testosterone-induced precocious sexual behavior in chickens differing in adult mating frequency. Behavioral Processes, 1979, 4, 35.

    CAS  Google Scholar 

  • Bull, J. J., and Vogt, R. C. Temperature-sensitive periods of sex determination in emydid turtles. Journal of Experimental Zoology, 1981, 218, 435.

    PubMed  CAS  Google Scholar 

  • Burns, R. K. Role of hormones in the differentiation of sex. In W. C. Young (Ed.), Sex and Internal Secretions. Baltimore: Williams & Wilkins, 1961.

    Google Scholar 

  • Chan, S. T. H. Natural sex reversal in vertebrates. Philosophical Transactions of the Royal Society (London) B, 1970, 259, 59.

    CAS  Google Scholar 

  • Chan, S. T. H., O, W.-S., and Hui, S. W. B. The gonadal and adenohypophysial functions of natural sex reversal. In R. Reinboth (Ed.), Intersexuality in the Animal Kingdom. New York: Springer-Verlag, 1975.

    Google Scholar 

  • Charnov, E. L., and Bull, J. When is sex environmentally determined? Nature, 1977, 266, 828.

    PubMed  CAS  Google Scholar 

  • Choat, J. H., and Robertson, D. R. Protogynous hermaphroditism in fishes of the family Scaridae. In R. Reinboth (Ed.), Intersexuality in the Animal Kingdom. New York: Springer-Verlag, 1975.

    Google Scholar 

  • Clemens, H. P., and Inslee, T. The production of unisexual broods by Tilapia mossambica sex-reversed with methyl testosterone. Transactions of the American Fish Society, 1968, 97, 18.

    Google Scholar 

  • Clemens, L. G. Neurohormonal control of male sexual behavior. In W. Montagna and W. A. Sadler (Eds.), Reproductive Behavior. New York: Plenum Press, 1974.

    Google Scholar 

  • Crawford, W. C., and Glick, B. The function of the preoptic, mammilaris lateralis and ruber nuclei in normal and sexually inactive male chickens. Physiology and Behavior, 1975, 15, 171.

    PubMed  Google Scholar 

  • Crews, D. Endocrine control of reptilian reproductive behavior. In C. Beyer (Ed.), Endocrine Control of Sexual Behavior. New York: Raven, 1979.

    Google Scholar 

  • Crews, D. Control of male sexual behaviour in the Canadian red-sided garter snake. In J. Balthazart, E. Pröve, and R. Gilles (Eds.), Hormones and Behaviour in Higher Vertebrates. Berlin: Springer-Verlag, 1983.

    Google Scholar 

  • Crews, D., Gustafson, J. E., and Tokarz, R. Psychobiology of parthenogenesis in reptiles. In R. Huey, E. Pianka, and T. Schoener (Eds.), Lizard Ecology. Cambridge: Harvard University Press, 1982.

    Google Scholar 

  • Dantschakoff, V. Ãœber chemische Werkzeuge bei der Realisation normal bestimmter embryonaler geschlechtlicher Histogenese bei Reptilien. Archiv für Entwickungsmechanik der Organismen, 1938, 138, 465.

    Google Scholar 

  • Davies, S. J. J. F. The timing of breeding by the zebra finch at Mileura, Western Australia. Ibis, 1978, 119, 369–372.

    Google Scholar 

  • Davis, D. E., and Domm, L. V. The influence of hormones on the sexual behavbior of domestic fowl. In Essays in Biology. Berkeley: University of California Press, 1943

    Google Scholar 

  • Diakow, C., and Nemiroff, A. Vasotocin, prostaglandin, and female reproductive behavior in the frog, Rana pipiens. Hormones and Behavior, 1981, 15, 86.

    CAS  Google Scholar 

  • Dodd, J. M. Genetic and environmental aspects of sex determination in cold-blooded vertebrates. Memoirs of the Society for Endocrinology, 1960, 7, 17.

    Google Scholar 

  • Domm, L. V. Intersexuality in adult Brown Leghorn males as a result of estrogenic treatment during early embryonic life. Proceedings of the Society for Experimental Biology and Medicine, 1939, 42, 310.

    Google Scholar 

  • Domm, L. V., and Davis D. E. The effect of sex hormones on sexual behavior of domestic fowl. Anaregan Comical Record, 1942, 82, 493.

    Google Scholar 

  • Dufaure, J.-P. Recherches descriptives et expérimentales sur les modalités et facteurs du développement de l’appareil génital chez le lézard vivipare (Lacerta vivipara Jacquin). Archives d’Anatomie Microscopique et de Morphologie Experimentale, 1966, 55, 437.

    Google Scholar 

  • Dzwillo, M. Ãœber künstliche Erzeugung funktioneller männlicher und weiblicher Genotyps bei Lebistes reticulatus. Biologisches Zentralblatt 1962, 81, 575.

    Google Scholar 

  • Engel, W., Klemme, B., and Schmid, M. H-Y antigen and sex determination in turtles. Differentiation, 1981, 20, 152.

    CAS  Google Scholar 

  • Fineman, R., Hamilton, J., Chase, G., and Bolling, D. Length, weight and secondary sex character development in male and female phenotypes in three sex chromosomal genotypes (XX, XY, YY) in the killifish, Oryzias Wipes, Journal of Experimental Zoology, 1974, 189, 227.

    PubMed  CAS  Google Scholar 

  • Fischer, E. A. The relationship between mating system and simultaneous hermaphroditism in the coral reef fish, Hypoplectrus nigricans (Serranidae), Animal Behaviour, 1980, 28, 620.

    Google Scholar 

  • Fishelson, L. Ecology and physiology of sex reversal in Anthias squamipinnis (Peters), (Teleostei: Anthiidae). In R. Reinboth (Ed.), Intersexuality in the animal kingdom. New York: Springer-Verlag, 1975.

    Google Scholar 

  • Foote, C. L. Intersexuality in amphibians. In C. N. Armstrong and A. J. Marshall (Eds.), Intersexuality in Vertebrates Including Man. London: Academic Press, 1964.

    Google Scholar 

  • Forbes, T. R. Intersexuality in reptiles. In C. N. Armstrong and A. J. Marshall(Eds.), Intersexuality in Vertebrates Including Man. London: Academic Press, 1964.

    Google Scholar 

  • Fricke, H., and Fricke, S. Monogamy and sex change by aggressive dominance in a coral reef fish. Nature, 1977, 266, 830.

    PubMed  CAS  Google Scholar 

  • Gallien, L. G. The action of sex hormones on the development of sex in amphibia. Memoirs of the Society for Endocrinology, 1955, 4, 188.

    Google Scholar 

  • Gallien, L. G. Genetic control of sexual differentiation in vertebrates. In R. L. DeHaan and H. Ursprung (Eds.), Organogenesis. New York: Holt, Rinehart and Winston, 1965.

    Google Scholar 

  • Gallien, L. G. Developments in sexual organogenesis. In M. Abercrombie and J. Brachet (Eds.), Advances in Morphogenesis, Vol. 6. New York: Academic Press, 1967.

    Google Scholar 

  • Gasc, J.-M., and Thibier, M. Plasma testosterone concentration in control and testosterone-treated chick embryos. Experientia, 1979, 35, 1411–1412.

    PubMed  CAS  Google Scholar 

  • Ghiselin, M. T. The Economy of Nature and the Evolution of Sex. Berkeley: University of California Press, 1974.

    Google Scholar 

  • Glick, B. The reproductive performance of birds hatched from eggs dipped in male hormone solutions. Poultry Science, 1961, 40, 1408.

    Google Scholar 

  • Glick, B. Embryonic exposure to testosterone propionate will adversely influence future mating behavior in male chickens, Federation Proceedings, 1965, 24, 700.

    Google Scholar 

  • Goodale, H. D. Castration in relation to the secondary sexual characters in Brown Leghorns. American Naturalist, 1913, 34, 127.

    Google Scholar 

  • Goodale, H. D. Feminized male birds. Genetics, 1918, 3, 276.

    PubMed  CAS  Google Scholar 

  • Gorman, G. C. The chromosomes of the reptilia: A cytotaxonomic interpretation. In A. B. Chiarelli and E. Capanna (Eds.), Cytotaxonomy and Vertebrate Evolution. London: Academic Press, 1973.

    Google Scholar 

  • Goy, R. W., and McEwen, B. S. Sexual Differentiation of the Brain. Cambridge, Mass.: M.I.T. Press, 1980.

    Google Scholar 

  • Guhl, A. M. Heterosexual dominance and mating behavior in chickens. Behaviour, 1949, 2, 106.

    Google Scholar 

  • Guhl, A. M., and Fischer, C. L. The behavior of chickens. In E. S. E. Hafez (Ed.), The Behavior of Domestic Animals. Baltimore: Williams & Wilkins, 1969.

    Google Scholar 

  • Gurney, M. E. Hormonal control of cell form and number in the zebra finch song system. Journal of Neuroscience, 1981, 1, 658–673.

    PubMed  CAS  Google Scholar 

  • Gurney, M. E. Behavioral correlates of sexual differentiation in the zebra finch song system. Brain Research, 1982, 231, 153.

    PubMed  CAS  Google Scholar 

  • Gurney, M. E., and Konishi, M. Hormone-induced sexual differentiation of brain and behavior in zebra finches. Science, 1980, 208, 1380–1383.

    PubMed  CAS  Google Scholar 

  • Hackman, E., and Reinboth, R. Delimitation of the critical stage of hormone-influenced sex differentiation in Hemihaplochromis multicolor (Hilgendorf) (Cichlidae). General and Comparative Endocrinology, 1974, 22, 42.

    Google Scholar 

  • Harding, C. F. Hormonal specificity and activation of social behaviour in the male zebra finch. In J. Balthazart, E. Pröve, and R. Gilles (Eds.), Hormones and Behaviour in Higher Vertebrates. Berlin: Springer-Verlag, 1983.

    Google Scholar 

  • Harrington, R. W. How ecological and genetic factors interact to determine when self-fertilizing hermaphrodites of Rivulus marmoratus change into functional secondary males, with a reappraisal of the modes of intersexuality among fishes. Copeia, 1971, 389.

    Google Scholar 

  • Haynes, R. L., and Glick, B. Hypothalamic control of sexual behavior in the chicken. Poultry Science, 1974, 53, 27.

    PubMed  CAS  Google Scholar 

  • Hoar, W. S. Reproductive behavior of fish. General and Comparative Endocrinology, 1962, Suppl. 1, 206.

    Google Scholar 

  • Hutchison, R. E. Hormonal differentiation of sexual behavior in Japanese quail. Hormones and Behavior, 1978, 11, 363–387.

    PubMed  CAS  Google Scholar 

  • Idler, D. R., Reinboth, R., Walsh, J. M., and Truscott, B. A comparison of 11-hydroxytestosterone and 11-ketotestosterone in blood of ambisexual and gonochoristic teleosts. General and Comparative Endocrinology, 1976, 30, 517.

    PubMed  CAS  Google Scholar 

  • Jenni, D. A. Evolution of polyandry in birds. American Zoology, 1974, 14, 129.

    Google Scholar 

  • Jost, A. Hormonal influences in the sex development of bird and mammalian embryos. Memoirs of the Society for Endocrinology, 1960, 7, 49.

    Google Scholar 

  • Jost, A. Basic sexual trends in the development of vertebrates. In Sex, Hormones and Behavior. (Ciba Foundation Symposium No. 62 ) Amsterdam. Excerpta Medica, 1979.

    Google Scholar 

  • Kaufman, L. Experiments on sex modification in cocks during their embryonal development. World’s Poultry Science Journal, 1956, 12, 41.

    Google Scholar 

  • Kelley, D. B., and Pfaff, D. W. Hormone effects on male sex behavior in adult South African clawed frogs, Xenopus laevis. Hormones and Behavior, 1976, 7, 159.

    CAS  Google Scholar 

  • Kilgore, L., and Glick, B. Testosterone’s influence on brain enzymes in the developing chick. Poultry Science, 1970, 49, 16.

    PubMed  CAS  Google Scholar 

  • Konishi, M., and Gurney, M. E. Sexual differentiation of brain and behaviour. Trends in Neurosciences, 1982, 5, 20–23.

    Google Scholar 

  • Kramer, D. L. The role of androgens in the parental behavior of the blue gourami, Trichogaster trichopterus (Pisces, Belontiidae). Animal Behaviour, 1972, 20, 798.

    PubMed  CAS  Google Scholar 

  • Liem, K. F. Sex reversal as a natural process in the synbranchiform fish Monopterus albus. Copeia, 1963, 303.

    Google Scholar 

  • Liem, K. F. Geographical and taxonomic variation in the pattern of natural sex reversal in the teleost fish order Synbranchiformes. Journal of Zoology London, 1968, 156, 225.

    Google Scholar 

  • Liley, N. R. Hormones and reproductive behavior in fishes. In W. S. Hoar and D. J. Randall (Eds.), Fish Physiology. New York: Academic Press, 1969.

    Google Scholar 

  • Liley, N. R. Effects of estrogens and other steroids on the sexual behavior of the female guppy, Poecilia reticulata. General and Comparative Endocrinology, 1972, Suppl. 3, 542.

    Google Scholar 

  • Lisk, R. D. Inhibitory centers in sexual behavior in the male rat. Science, 1966, 152, 669.

    PubMed  CAS  Google Scholar 

  • Lowe, T. P., and Larkin, J. R. Sex reversal in Bella splendens Regan with emphasis on the problem of sex determination. Journal of Experimental Zoology, 1975, 191, 25.

    PubMed  CAS  Google Scholar 

  • Martinez-Vargas, M. C., Gibson, D. B., Sar, M., and Stumpf, W. E. Estrogen target sites in the brain of the chick embryo. Science, 1975, 190, 1307.

    PubMed  CAS  Google Scholar 

  • Mashaly, M. M., and Glick, B. Comparison of androgen levels in normal males (Gallus domesticus) and in males made sexually inactive by embryonic exposure to testosterone propionate. General and Comparative Endocrinology, 1979, 38, 105–110.

    PubMed  CAS  Google Scholar 

  • Mason, P., and Adkins, E. K. Hormones and social behavior in the lizard, Anolis carolinensis. Hormones and Behavior, 1976, 7, 75.

    CAS  Google Scholar 

  • Mauldin, J. M., Wolfe, J. L., and Glick, B. The behavior of chickens following embryonic treatment with testosterone propionate. Poultry Science, 1975, 54, 2133.

    Google Scholar 

  • Maynard Smith, J. The Evolution of Sex. Cambridge: Cambridge University Press, 1978.

    Google Scholar 

  • McDonald, P., Beyer, C., Newton, F., Brien, B., Baker, R., Tan, H. S., Sampsom, C., Kitching, P., Greenhill, R., and Pritchard, D. Failure of 5a-dihydrotestosterone to initiate sexual behavior in the castrated male rat. Nature, 1970, 227, 964.

    PubMed  CAS  Google Scholar 

  • McEwen, B. S., and Pfaff, D. W. Chemical and physiological approaches to neuroendocrine mechanisms: Attempts at integration. In W. F. Ganong and L. Martini (Eds.), Frontiers in Neuroendocrinology. New York: Oxford University Press, 1973.

    Google Scholar 

  • Mittwoch, U. Chromosomes and sex differentiation. In R. Reinboth (Ed.), Intersexuality in the Animal Kingdom. New York: Springer-Verlag, 1975.

    Google Scholar 

  • Moore, C. L. Maternal behavior of rats is affected by hormonal condition of pups. journal of Comparative REGAN and Physiological Psychology, 1982, 96, 123.

    CAS  Google Scholar 

  • Moore, F. L. Differential effects of testosterone plus dihydrotestosterone on male courtship of castrated newts, Taricha granulosa. Hormones and Behavior, 1978, 11, 202.

    CAS  Google Scholar 

  • Moore, F. L., and Zoeller, R. T. Endocrine control of amphibian sexual behavior: Evidence for a neurohormone-androgen interaction. Hormones and Behavior, 1979, 13, 207.

    Google Scholar 

  • Morescalchi, A. Amphibia. In A. B. Chiarelli and E. Capanna (Eds.), Cytotaxonomy and Vertebrate Evolution. London: Academic Press, 1973.

    Google Scholar 

  • Morris, J. B. The Effect of Early Steroid Hormone Administration on the Adult Sexual Behavior of the Zebra Finch, Poephila guttata. Master’s thesis, Cornell University, 1980.

    Google Scholar 

  • Naftolin, F., Ryan, K. J., and Petro, Z. Aromatization of androstenedione by the anterior hypothalamus of adult male and female rats. Endocrinology, 1972, 90, 295.

    PubMed  CAS  Google Scholar 

  • Noble, G. K., and Kumpf, K. F. R. Sex reversal in the fighting fish, Betta splendens. Anatomical Record, 1937, 70, 97.

    Google Scholar 

  • Nottebohm, F., and Arnold, A. P. Sexual dimorphism in vocal control areas of the songbird brain. Science, 1976, 194, 211.

    PubMed  CAS  Google Scholar 

  • Ohno, S. Sex Chromosomes and Sex-Linked Genes. Berlin: Springer-Verlag, 1967.

    Google Scholar 

  • Orcutt, F. S. Effects of oestrogen on the differentiation of some reproductive behaviours in male pigeons (Columba livia). Animal Behaviour, 1971, 19, 277.

    Google Scholar 

  • Ottinger, M. A., and Bakst, M. R. Peripheral androgen concentrations and testicular morphology in embryonic and young male Japanese quail. General and Comparative Endocrinology, 1981, 43, 170–177.

    PubMed  CAS  Google Scholar 

  • Ozon, R. Mise en évidence d’hormones stéröides oestrogènes dans le sang de la poule adulte et chez l’embryon de poulet. Comptes Rendus de l’Académie des Sciences (Paris), 1965, 261, 5664.

    CAS  Google Scholar 

  • Palka, Y., and Gorbman, A. Pituitary and testicular influenced sexual behavior in male frogs, Rana pipiens. General and Comparative Endocrinology, 1973, 21, 148.

    CAS  Google Scholar 

  • Pieau, C. Temperature and sex differentiation in embryos of two chelonians, Emys orbicularis L. and Testudo graeca L. In R. Reinboth (Ed.), Intersexuality in the Animal Kingdom. New York: Springer-Verlag, 1975.

    Google Scholar 

  • Pincus, G., and Hopkins, T. F. The effects of various estrogens and steroid substances on sex differentiation in the fowl. Endocrinology, 1958, 62, 112.

    PubMed  CAS  Google Scholar 

  • Pohl-Apel, G., and Sossinka, R. Der Einfluss früher Hormongaben auf den Entwicklungsverlauf und die Ausbildung primärer und sekundärer Geschlechtsmerkmale einschliesslich Sexualverhalten beim Zebrafinken, Taeniopygia guttata castanotis (Estrildidae): III. Wirkung von prä-und postnatalen Östrogengaben. Verhandlungen der Deutschen Zoologischen Gesellschaft, 1982a, 75, 326 (abstract).

    Google Scholar 

  • Pohl-Apel, G., and Sossinka, R. Männchen-typischer Gesang bei weiblichen Zebrafinken (Taeniopygia guttata castanotis). Journal für Ornithologie, 1982b, 123, 211.

    Google Scholar 

  • Pressley, P. H. Pair formation and joint territoriality in a simultaneous hermaphrodite: The coral reef fish Serranus tigrinus. Zeitschrift für Tierpsychologie, 1981, 56, 33.

    Google Scholar 

  • Price, D., Zaaijer, J. J. P., Ortiz, E., and Brinkmann, A. C. Current views on embryonic sex differentiation in reptiles, birds and mammals. In E. J. W. Barrington (Ed.), Trends in Comparative Endocrinology. American Zoological Suppl., 1975.

    Google Scholar 

  • Pröve, E. Der Einfluss von Kastration und Testosteronsubstitution auf das Sexualverhalten männlicher Zebrafinken (Taeniopygia guttata castanotis Gould). Journal of Ornithology, 1974, 115, 338–347.

    Google Scholar 

  • Pröve, E. Hormonal correlates of behavioural development in male zebra finches. In J. Balthazart, E. Pröve and R. Gilles (Eds.), Hormones and Behaviour in Higher Vertebrates. Berlin: Springer-Verlag, 1983.

    Google Scholar 

  • Ray-Chaudhuri, R. Cytotaxonomy and chromosome evolution in birds. In A. B. Chiarelli and E. Capanna (Eds.), Cytotaxonomy and Vertebrate Evolution. London: Academic Press, 1973.

    Google Scholar 

  • Reinboth, R. Intersexuality in fishes. Memoirs of the Society of Endocrinology, 1970, 18, 515.

    Google Scholar 

  • Reinboth, R. Some remarks on secondary sex characters, sex and sexual behavior in teleosts. General and Comparative Endocrinology, 1972, Suppl. 3, 565.

    Google Scholar 

  • Rissman, E. F., Ascenzi, M., Johnson, P., and Adkins-Regan, E. Effect of embryonic treatment with oestradiol benzoate on reproductive morphology, ovulation and oviposition and plasma LH concentrations in female quail (Coturnix coturnix japonica). Journal of Reproduction and Fertility, 1984, 71, 211–217.

    Google Scholar 

  • Robertson, D.R. Social control of sex reversal in a coral-reef fish. Science, 1972, 177, 1007.

    PubMed  CAS  Google Scholar 

  • Romanoff, A. L. The Avian Embryo. New York: Macmillan, 1960.

    Google Scholar 

  • Sachs, B. D. Photoperiodic control of reproductive behavior and physiology of the male Japanese quail (Coturnix coturnix japonica). Hormones and Behavior, 1969, 1, 7.

    Google Scholar 

  • Schmidt, R. S. Masculinization of toad pretrigeminal nucleus by androgens. Brain Research, 1982, 244, 190.

    PubMed  CAS  Google Scholar 

  • Schumacher, M., and Balthazart, J. The postnatal demasculinization of sexual behavior in the Japanese quail (Couurnix coturnix japonica). Hormones and Behavior, 1984, 18, 298.

    PubMed  CAS  Google Scholar 

  • Shapiro, D. Y. Serial female sex changes after simultaneous removal of males from social groups of a coral reef fish. Science, 1980, 209, 1136.

    PubMed  CAS  Google Scholar 

  • Smith, C. L. The evolution of hermaphroditism in fishes. In R. Reinboth (Ed.), Intersexuality in the Animal Kingdom. New York: Springer-Verlag, 1975.

    Google Scholar 

  • Sossinka, R. Ovarian development in an opportunistic breeder, the zebra finch Poephila guttata castanotis. Journal of Experimental Zoology, 1980, 211, 225–230.

    Google Scholar 

  • Sossinka, R., and Pohl-Apel, G. Der Einfluss früher Hormongaben auf den Entwicklungsverlauf and die Ausbildung primärer and sekundärer Geschlechtsmerkmale einschliesslich Sexualverhalten beim Zebrafinken, Taeniopygia guttata castanotis (Estrildidae): II. Wirkung von postnatalen Testosteron-and Antiandrogengaben. Verhandlungen der Deutschen Zoologischen Gesellschaft, 1982, 75, 333 (abstract).

    Google Scholar 

  • Sossinka, R., Pohl-Apel, G., and Hall, M. R. Der Einfluss früher Hormongaben auf den Entwicklungsverlauf and die Ausbildung primärer and sekundärer Geschlechtsmerkmale einschliesslich Sexualverhalten beim Zebrafinken, Taeniopygia guttata castanotis (Estrildidae): I. Wirkung von pränatalen Testosterongaben. Verhandlungen der Deutschen Zoologischen Gesellschaft, 1981, 202, 202.

    Google Scholar 

  • Taber, E. Intersexuality in birds. In C. N. Armstrong and A. J. Marshall (Eds.), Intersexuality in Vertebrates Including Man. London: Academic Press, 1964.

    Google Scholar 

  • Tanabe, Y., Nakamura, T., Fujioka, K., and Doi, O. Production and secretion of sex steroid hormones by the testes, the ovary, and the adrenal glands of embryonic and young chickens (Gallus domesticus). General and Comparative Endocrinology, 1979, 39, 26–33.

    PubMed  CAS  Google Scholar 

  • Urbanski, H. F., and Follett, B. K. Sexual differentiation of the photoperiodic response in Japanese quail. Journal of Endocrinology, 1982, 92, 279.

    PubMed  CAS  Google Scholar 

  • Van Tienhoven, A. Reproductive Physiology of Vertebrates. Philadelphia: Saunders, 1968.

    Google Scholar 

  • Wada, M. Effects of sex steroids on calling, locomotor activity, and sexual behavior in castrated male Japanese quail. Hormones and Behavior, 1982, 16, 147.

    PubMed  CAS  Google Scholar 

  • Wai, E. H., and Hoar, W. S. The secondary sex characters and reproductive behavior of gonadectomized sticklebacks treated with methyl testosterone. Canadian Journal of Zoology, 1963, 41, 611–628.

    CAS  Google Scholar 

  • Warner, R. L., Cain, J. R., Moreng, G. R., and Maniscalco, V. J. Reproductive organs and behavior of Japanese quail following treatment of embryos with steroids and antisteroids. Anatomical Record, 1977, 187, 742.

    Google Scholar 

  • Warner, R.R. The adaptive significance of sequential hermaphroditism in animals. American Naturalist, 1975, 109, 61.

    Google Scholar 

  • Warner, R. R. The evolution of hermaphroditism and unisexuality in Aquatic and terrestrial vertebrates. In E. S. Reese and F. J. Lighter (Eds.), Contrasts in Behavior. New York: Wiley, 1978.

    Google Scholar 

  • Warner, R. R., Robertson, D. R., and Leigh, E. G. Sex change and sexual selection. Science, 1975, 190, 633.

    PubMed  CAS  Google Scholar 

  • Wentworth, B. C., Hendricks, B. G., and Sturtevant, J. Sterility induced in Japanese quail by spray treatment of eggs with mestranol. Journal of Wildlife Management, 1968, 32, 879.

    Google Scholar 

  • Whitsett, J. M., Irvin, E. W., Edens, F. W., and Thaxton, J. P. Demasculinization of male Japanese quail by prenatal estrogen treatment. Hormones and Behavior, 1977, 8, 254–260.

    PubMed  CAS  Google Scholar 

  • Williams, G. C. Sex and Evolution. Princeton, N.J.: Princeton University Press, 1975.

    Google Scholar 

  • Wilson, J. A., and Glick, B. Ontogeny of mating behavior in the chicken. American Journal of Physiology, 1970, 218, 951.

    PubMed  CAS  Google Scholar 

  • Wilson, M. I., and Bermant, G. An analysis of social interactions in Japanese quail, Coturnix coturnix japonica. Animal Behaviour, 1972, 20, 252.

    Google Scholar 

  • Witschi, E. Age of sex-determining mechanisms in vertebrates. Science, 1959, 130, 372.

    PubMed  CAS  Google Scholar 

  • Witschi, E. Mechanisms of sexual differentiation. In M. Hamburgh and E. J. W. Barrington (Eds.), Hormones in Development. New York: Appleton-Century-Crofts, 1971.

    Google Scholar 

  • Wolff, E. Endocrine function of the gonad in developing vertebrates. In A. Gorman (Ed.), Comparative REGAN Endocrinology. New York: Wiley, 1959. -

    Google Scholar 

  • Woods, J. E., and Brazzill, D. M. Plasma 17ß-estradiol levels in the chick embryo. General and Comparative Endocrinology, 1981, 44, 37–43.

    PubMed  CAS  Google Scholar 

  • Woods, J. E., Simpson, R. M., and Moore, P. L. Plasma testosterone levels in the chick embryo. General and Comparative Endocrinology, 1975, 27, 543–547.

    PubMed  CAS  Google Scholar 

  • Yamamoto, T.-O. Sex differentiation. In W. S. Hoar and D. J. Randall (Eds.), Fish Physiology. New York: Academic Press, 1969.

    Google Scholar 

  • Yamamoto, T.-O., and Kajishima, T. Sex hormone induction of sex reversal in the goldfish and evidence for male heterogamety. Journal of Experimental Zoology, 1968, 146, 163.

    Google Scholar 

  • Yntema, C. L. Temperature levels and periods of sex determination during incubation of eggs of Chelydra serpentina. Journal of Morphology, 1979, 159, 17–28.

    Google Scholar 

  • Young, W. C., Goy, R. W., and Phoenix, C. H. Hormones and sex behavior. Science, 1964, 143, 212–218.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Adkins-Regan, E. (1985). Nonmammalian Psychosexual Differentiation. In: Adler, N., Pfaff, D., Goy, R.W. (eds) Reproduction. Handbook of Behavioral Neurobiology, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4832-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4832-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4834-4

  • Online ISBN: 978-1-4684-4832-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics