Skip to main content

Effect of Calcium-Sodium Exchange and Calcium Channel Inhibition on Calcium Release from Bone in an in-vitro Bone Perfusion System

  • Chapter
Phosphate and Mineral Metabolism

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 178))

Abstract

The regulation of calcium release from bone is likely to be at least in part, dependant on cellular activity. In recent years it has been shown that the intracellular calcium concentration is important in regulating the activity of many cells from a wide range of tissues including those of the endocrine system and bone. There are several mechanisms involved in regulating cell calcium including calcium sodium (Ca-Na) exchange, calcium-magnesium sensitive ATPase and calcium transport via slow calcium channels1. Thus it is possible that by regulating intracellular calcium, some of these mechanisms could also regulate the cell mediated component of the transfer of calcium from bone to the extracellular fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. P. Rubin “Calcium and cellular secretion”. Plenum Press New-York (1982)

    Google Scholar 

  2. P. J. Somerville and M. Kaye. “Studies on the action of inorganic phosphorus on calcium transport in isolated rat tails used as an organ perfusion system”. Kidney Internat. 22: 348–354 (1982)

    Article  CAS  Google Scholar 

  3. O. Hauswirth and B. N. Singh, “Ionic mechanisms in heart muscle in relation to the genesic and pharmacological control of cardiac arrhytYunias. Pharmacol. Rev. 30: 5–63 (1979)

    Google Scholar 

  4. H. Fleish and R. Felix, “Diphosphonates”. Calcif. Tiss. Internat. 27: 91–96 (1979)

    Article  Google Scholar 

  5. N. S. Kreiger and P. H. Tashjian, “Parathyroid hormone stimulates bone resorption via a Na-Ca exchange mechanism. Nature. 287: 843–845

    Google Scholar 

  6. P. Ducouret, “The effect of quinidine on membrane electrical activity in frog auricular fibres studied by current and voltage clamp. Brit. J. Pharmacol. 57: 163–184 (1976)

    Article  CAS  Google Scholar 

  7. J. A. L. Arruda and S. Sabatini, “Effect of quinidine on Na, H and water transport by the turtle and toad bladders. J. Memb. Biol. 55: 151–147 (1980)

    Article  Google Scholar 

  8. J. W. Dietrich, G. R. Mundy and L. G. Raisz. “Inhibition of bone resorption in tissue culture by membrane stabilizing drugs”. Endocrinology. 104: 1644–1648 (1979)

    Article  PubMed  CAS  Google Scholar 

  9. T. J. Hahn, C. R. Scharp, C. A. Richardson, L. R. Halstead, A. J. Kahn and S. J. Teitlebaum. “Interaction of diphenylhydantoin (phenytoin) and phenobarbital with hormonal mediation of fetal rat bone resorption in vitro”. J. Clin. Invest. 62: 406–414 (1978)

    Article  PubMed  CAS  Google Scholar 

  10. U. Lerner and L. Hanstrom. “Influence of diphenylhydantoin on on lysosomal enzyme release during bone resorption in vitro”. Acta Pharmacol. 47: 144–150 (1980)

    Article  CAS  Google Scholar 

  11. L. C. Cantley, L. Josephson, R. Warner, M. Vanagisawa, C. Lechene, G. Guidotti. Vanadate is a potent (Na,K) ATPase inhibitor found in ATP derived from muscle“. J. Biol. Chem. 252: 7421–7423 (1977)

    PubMed  CAS  Google Scholar 

  12. T. B. Simons. “Vanadate–a new tool for biologists”. Nature. 281: 337–338 (1979)

    Article  PubMed  CAS  Google Scholar 

  13. B. N. Singh, E. N. Vaughan-William. “A fourth class of anti-dysrhythmic action? Effect of verapamil on ouabain toxicity, on atrial and ventricular intracellular potentials and on other features of cardiac function”. Cardio-vasc. Research. 6: 109–119 (1972).

    Article  CAS  Google Scholar 

  14. U. Lerner and G. T. Gustafson. “Inhibition of 1 hydroxy Vitamin-D3 stimulated bone resorption in tissue culture by the calcium antagonist verapamil”. Eur. J. of Clin. Investig. 12: 185–190 (1982)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Somerville, P.J., Kaye, M. (1984). Effect of Calcium-Sodium Exchange and Calcium Channel Inhibition on Calcium Release from Bone in an in-vitro Bone Perfusion System. In: Massry, S.G., Maschio, G., Ritz, E. (eds) Phosphate and Mineral Metabolism. Advances in Experimental Medicine and Biology, vol 178. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4808-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4808-5_31

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4810-8

  • Online ISBN: 978-1-4684-4808-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics