Skip to main content

Differential Regulation of Putative M1/M2 Muscarinic Receptors: Implications for Different Receptor-Effector Coupling Mechanisms

  • Chapter
  • First Online:
Book cover Neurotransmitter Receptors

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 175))

Abstract

This chapter focuses upon results from our recent studies concerning the drug specificities and regulatory profiles of high-affinity muscarinic agonist binding site subtypes. The data are presented in conjunction with other evidence for muscarinic receptor subtypes and a significant portion of the discussion emphasizes the potential involvement of distinct receptor-effector coupling mechanisms for these subtypes. Other reviews relevant to this topic are currently available (1–4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. J. M. Birdsall, E. C. Hulme, R. Hammer, and J. S. Stockton, Subclasses of muscarinic receptors, in: “Psychopharmacology and Biochemistry of Neurotransmitter Receptors,” H. I. Yamamura, R. W. Olsen, and E. Usdin, eds., Elsevier/ North-Holland, New York, p. 97 (1980).

    Google Scholar 

  2. F. J. Ehlert, W. R. Roeske, and H. I. Yamamura, Muscarinic receptor: regulation by guanine nucleotides, ions, and N-ethyl-maleimide, Fed. Proc. 40: 153 (1981).

    CAS  PubMed  Google Scholar 

  3. W. R. Roeske, F. J. Ehlert, D. S. Barritt, K. Yamanaka, L. B. Rosenberger, S. Yamada, S. Yamamura, and H. I. Yamamura, Recent advances in muscarinic receptor heterogeneity and regulation, in: “Molecular Pharmacology of Neurotransmitter Receptors,” T. Segawa, H. I. Yamamura, and K. Kuriyama, eds., Raven Press, New York (1983).

    Google Scholar 

  4. F. J. Ehlert, W. R. Roeske, and H. I. Yamamura, The nature of muscarinic receptor binding, in: “Handbook of Psychopharmacology,” L. Iversen, S. D. Iversen, and S. H. Snyder, eds., Plenum, New York (1983).

    Google Scholar 

  5. H. H. Dale, The action of certain ester and ethers of choline and their relation to muscarine, J. Pharmacol. Exp. Ther. 6: 147 (1914).

    CAS  Google Scholar 

  6. O. Loewi, Uber humorale ubertragbarkeit der herznervenwirkung, Pflugers Arch. Gen. Physiol. 189: 239 (1921).

    Article  Google Scholar 

  7. A. P. Roszkowski, An unusual type of ganglionic stimulant, J. Pharmacol. Exp. Ther. 132: 156 (1961).

    CAS  PubMed  Google Scholar 

  8. R. K. Goyal and S. Rattan, Neurohumoral hormonal, and drug receptors for the lower esophageal sphincter, Gastroenterol. 74: 598 (1978).

    Article  CAS  Google Scholar 

  9. B. H. Jaup, R. W. Stockbrugger, and G. Dotevall, Comparison of the action of pirenzepine and 1-hyoscyamine on gastric acid secretion and other muscarinic effects, Scand. J. Gastroenterol. (suppl.) 66: 89 (1980).

    CAS  Google Scholar 

  10. R. Hammer, C. P. Berrie, N. J. M. Birdsall, A. S. C. Burgen, and E. C. Hulme, Pirenzepine distinguishes between different subclasses of muscarinic receptors, Nature 283: 90 (1980).

    Article  ADS  CAS  Google Scholar 

  11. R. Hammer and A. Giachetti, Muscarinic receptor subtypes: M1 and M2 biochemical and functional characterization, Life Sci. 31: 2991 (1982).

    Article  CAS  Google Scholar 

  12. M. P. Caulfield, G. A. Higgins, and D. W. Straughan, Central administration of the muscarinic receptor subtype-selective antagonist pirenzepine selectively impairs passive avoidance learning in the mouse, J. Pharm. Pharmacol. 35: 131 (1983).

    Article  CAS  Google Scholar 

  13. M. Watson, H. I. Yamamura, and W. R. Roeske, A unique regulatory profile and regional distribution of [3H]pirenzepine binding in the rat provide evidence for distinct M7 and M2 muscarinic receptor subtypes, Life Sci. 32: 3011 (1983).

    Article  Google Scholar 

  14. R. B. Barlow, K. J. Berry, P. A. M. Glenton, N. M. Nikolaou, and K. S. Soh, A comparison of affinity constants for muscarinic-sensitive acetylcholine receptors in guinea-pig atrial pacemaker cells at 29° C and 37° C, Brit. J. Pharmacol. 58: 613 (1976).

    Article  CAS  Google Scholar 

  15. D. A. Brown, A. Forward, and S. Marsh, Antagonist discrimination between ganglionic and ileal muscarinic receptors, Brit. J. Pharmacol. 71: 362 (1980).

    Article  CAS  Google Scholar 

  16. M. Watson, W. R. Roeske, and H. I. Yamamura, [3H]Pirenzepine selectively identifies a high affinity population of muscarinic cholinergic receptors in the rat cerebral cortex, Life Sci. 31: 2019 (1982).

    Article  CAS  Google Scholar 

  17. M. Watson, W. R. Roeske, P. C. Johnson, and H. I. Yamamura, [3H]Pirenzepine identifies putative M1, Brain Res., in press.

    Google Scholar 

  18. H. I. Yamamura, J. K. Wamsley, P. Deshmukh, and W. R. Roeske, Differential light microscopic autoradiographic localization of muscarinic cholinergic receptors in the brainstem and spinal cord of the rat using [3H]pirenzepine, Eur. J. Pharmacol. 91: 1983 (1983).

    Article  Google Scholar 

  19. N. J. M. Birdsall, A. S. V. Burgen, C. R. Hiley, and E. C. Hulme, Binding of agonists and antagonists to muscarinic receptors, J. Supramol. Struc. 4: 367 (1976).

    Article  CAS  Google Scholar 

  20. N. J. M. Birdsall, A. S. C. Burgen, and E. C. Hulme, The binding of agonists to brain muscarinic receptors, Mol. Pharmacol. 14: 723 (1978).

    CAS  PubMed  Google Scholar 

  21. F. J. Ehlert, Y. Dumont, W. R. Roeske, and H. I. Yamamura, Muscarinic receptor binding in rat brain using the agonist [3H]cismethyldioxolane, Life Sci. 26: 961 (1980).

    Article  CAS  Google Scholar 

  22. F. J. Ehlert, H. I. Yamamura, D. J. Triggle, and W. R. Roeske, The influence of guanyl-5’-yl imidodiphosphate and sodium chloride on the binding of the muscarinic agonist, [3H]cismethyldioxolane, Eur. J. Pharmacol. 61: 317 (1980).

    Article  CAS  Google Scholar 

  23. F. J. Ehlert, W. R. Roeske, and H. I. Yamamura, Regulation of muscarinic receptor binding by guanine nucleotides and N-ethyl-maleimide, J. Supramol. Struct. 14: 149 (1980).

    Article  CAS  Google Scholar 

  24. M. M. Hosey, Regulation of antagonist binding to cardiac muscarinic receptors, Biochem. Biophys. Res. Commun. 107: 314 (1982).

    Article  CAS  Google Scholar 

  25. T. W. Vickroy, W. R. Roeske, and H. I.Yamamura, Characterization of a high affinity muscarinic agonist binding site by a rapid filtration technique with [3H]cismethyldioxolane, Fed. Proc. 42: 1146 (1983).

    Google Scholar 

  26. K. J. Chang, R. C. Deth, and D. J. Triggle, Structural parameters determining cholinergic and anticholinergic activities in a series of 1,3-dioxolanes, J. Med. Chem. 15: 243 (1972).

    Article  CAS  Google Scholar 

  27. T. W. Vickroy, H. I. Yamamura, and W. R. Roeske, Differential regulation of high-affinity agonist binding to muscarinic sites in the rat heart, cerebellum, and cerebral cortex, Biochem. Biophys. Res. Commun., in press.

    Google Scholar 

  28. J. M. Stockton, N. J. M. Birdsall, A. S. V. Burgen, and E. C. Hulme, Modification of binding properties of muscarinic receptors by gallamine, Mol. Pharmacol. 23: 551 (1983).

    CAS  PubMed  Google Scholar 

  29. J. Dunlap and J. H. Brown, Heterogeneity of binding sites on cardiac muscarinic receptors induced by the neuromuscular blocking agents gallamine and pancuronium, Mol. Pharmacol. 24: 15 (1983).

    CAS  PubMed  Google Scholar 

  30. A. Bartolini, R. Bartolini, and E. F. Domino, Effects of physostigmine on brain acetylcholine content and release, Neuropharmacology 12: 15 (1973).

    Article  CAS  Google Scholar 

  31. F. J. Rathbun and J. T. Hamilton, Effect of gallamine on cholinergic receptor, Can. Anaesth. Soc. J. 17: 574 (1970).

    Article  CAS  Google Scholar 

  32. A. L. Clark and F. Mitchelson, The inhibitory effect of gallamine on muscarinic receptors, Brit. J. Pharmacol. 14: 323 (1976).

    Article  Google Scholar 

  33. C. P. Berrie, N. J. M. Birdsall, A. S. C. Burgen and E. C. Hulme, Guanine nucleotides modulate muscarinic receptor binding in the heart, Biochem. Biophys. Res. Commun. 87: 1000 (1979).

    Article  CAS  Google Scholar 

  34. L. B. Rosenberger, W. R. Roeske, and H. I. Yamamura, The regulation of muscarinic cholinergic receptors by guanine nucleotides in cardiac tissue, Eur. J. Pharmacol. 56: 179 (1979).

    Article  CAS  Google Scholar 

  35. L. B. Rosenberger, H. I. Yamamura, and W. R. Roeske, Cardiac muscarinic cholinergic receptor binding is regulated by Na and guanyl nucleotides, J. Biol. Chem. 255: 820 (1980).

    CAS  PubMed  Google Scholar 

  36. J.-W. Wei and P. V. Sulakhe, Cardiac muscarinic cholinergic receptor sites: opposing regulation by divalent cations and guanine nucleotides of receptor-agonist interaction, Eur. J. Pharmacol. 62: 345 (1980).

    Article  CAS  Google Scholar 

  37. J.-W. Wei and P. V. Sulakhe, Requirement for sulfhydryl groups in the differential effects of magnesium ion and GTP on agonist binding of muscarinic cholinergic receptor sites in rat atrial membrane fraction, Naunyn-Schmiedeberg’s Arch. Pharmacol. 314: 51 (1980).

    Article  CAS  Google Scholar 

  38. R. S. Aronstam, L. G. Akood, and W. Hoss, Influence of sulfhydryl reagents and heavy metals on the functional state of the muscarinic acetylcholine receptor in rat brain, Mol. Pharmacol. 14: 575 (1978).

    CAS  PubMed  Google Scholar 

  39. S. J. Korn, M. W. Martin, and T. K. Harden, N-ethylmaleimideinduced alteration in the interaction of agonists with muscarinic cholinergic receptors of rat brain, J. Pharmacol. Exp. Ther. 224: 118 (1983).

    CAS  PubMed  Google Scholar 

  40. M. Waelbroeck, P. Robberecht, P. Chatelain, and J. Christophe, Rat cardiac muscarinic receptors: I. Effects of guanine nucleotides on high-and low-affinity binding sites, Mol. Pharmacol. 21: 581 (1982).

    CAS  PubMed  Google Scholar 

  41. T. W. Vickroy, M. Watson, H. I. Yamamura, and W. R. Roeske, Agonist binding to multiple muscarinic receptors, Fed. Proc., in press.

    Google Scholar 

  42. M. Rodbell, The role of hormone receptors and GTP-regulatory proteins in membrane transduction, Nature 284: 17 (1980).

    Article  ADS  CAS  Google Scholar 

  43. E. M. Ross and A. G. Gilman, Biochemical properties of hormone-sensitive adenylate cyclase, Ann. Rev. Biochem. 49: 533 (1980).

    Article  CAS  Google Scholar 

  44. F. Murad, Y.-M. Chi, J. W. Rall, and E. W. Sutherland, Adenyl cyclase III. The effect of catecholamines and choline esters on the formation of adenosine 3’-5’ phosphate by preparations from cardiac muscle and liver, J. Biol. Chem. 237: 1233 (1962).

    CAS  PubMed  Google Scholar 

  45. A. M. Watanabe, M. M. McConnaughey, R. A. Strawbr43ge, J. W. Fleming, L. R. Jones, and H. R. Besch, Muscarinic cholinergic receptor modulation of ß-adrenergic receptor affinity for catecholamines, J. Biol. Chem. 253: 4833 (1978).

    CAS  Google Scholar 

  46. K. H. Jacobs, K. Aktories, and G. Schultz, GTP-dependent inhibition of cardiac adenylate cyclase by mascarinic cholinergic agonists, Naunyn-Schmiedeberg’s Arch. Pharmaocl. 310: 113 (1979).

    Article  Google Scholar 

  47. O. Hazeki and M. Ui, Modification by islet-activating protein of receptor-mediated regulation of cyclic AMP accumulation in isolated rat heart cells, J. Biol. Chem. 256: 2856 (1981).

    CAS  PubMed  Google Scholar 

  48. W. R. Roeske and H. I. Yamamura, Adrenergic-cholinergic interactions, in: “Adrenoceptors and Catecholamine Action, Part B,” G. Kunos, ed., John Wiley and Sons, New York (1983).

    Google Scholar 

  49. T. Katada and M. Ui, Direct modification of the membrane adenylate cyclase system by islet-activating protein due to ADP-ribosylation of membrane protein, Proc. Natl. Acad. Sci. USA 79: 3129 (1982).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Vickroy, T.W., Watson, M., Yamamura, H.I., Roeske, W.R. (1984). Differential Regulation of Putative M1/M2 Muscarinic Receptors: Implications for Different Receptor-Effector Coupling Mechanisms. In: Kito, S., Segawa, T., Kuriyama, K., Yamamura, H.I., Olsen, R.W. (eds) Neurotransmitter Receptors. Advances in Experimental Medicine and Biology, vol 175. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-4805-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4805-4_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-4807-8

  • Online ISBN: 978-1-4684-4805-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics