Skip to main content

Ca2+-Activated, Fatty Acid-Dependent Guanylate Cyclase in Synaptic Plasma Membranes and Its Requirement for Ca2+ and Mg-GTP in the Activation

  • Chapter
  • First Online:
Book cover Neurotransmitter Receptors

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 175))

Abstract

Cyclic GMP in an intact cell system was reported to increase by various biologically active compounds, including muscarinic cholinergic agonists and excitatory amino acids, and supposed to act as intracellular messenger of the various neurotransmitters and hormones. Guanylate cyclase, a cyclic GMP-generating enzyme, in a cell free system can not be stimulated by agents increasing cyclic GMP contents. This suggests that the cyclase is activated by a substance generated or a process taking place within cells upon hormone stimulation. Thus cellular components such as Ca2+, fatty acids and their metabolites that are intracellularly liberated on the stimulation have been supposed to be possible physiological activators of guanylate cyclase in intact cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Asakawa, C. Johnson, J. Ruiz, I. Scheinbaum, T. R. Russell, and R. J. Ho, Activation by “feedback regulator” and some properties of guanylate cyclase of plasma membrane of rat epididymal fat cells, Biochem. Biophys. Res. Comm. 72: 1335 (1976)

    Article  CAS  Google Scholar 

  2. T. Asakawa, C. Johnson, J. Ruiz, I. Scheinbaum, T. R. Russell, and R. J. Ho, Activation by “feedback regulator” and some properties of guanylate cyclase of plasma membrane of rat epididymal fat cells, Biochem. Biophys. Res. Comm. 72: 1335 (1976)

    Article  CAS  Google Scholar 

  3. Asakawa, I. Scheinbaum, and R. J. Ho, Stimulation of guanylate cyclase activity by several fatty acids, Biochem. Biophys. Res. Comm. 73: 141 (1976). (1976)

    Google Scholar 

  4. Wallach, and I. Pastan, Stimulation of guanylate cyclase of fibroblasts by free fatty acids, J. Biol. Chem. 251: 5802 (1978).

    Google Scholar 

  5. T. Asakawa, M. Takenoshita, S. Uchida, and S. Tanaka, Activation of guanylate cyclase in synaptic plasma membranes of cerebral cortex by free fatty acids, J. Neurochem. 30: 161 (1977)

    Article  Google Scholar 

  6. H. Hidaka, and T. Asano, Stimulation of human platelet guanylate cyclase by unsaturated fatty acid peroxides, Proc. Natl. Acad. Sci. USA 74: 3657 (1977).

    Article  ADS  CAS  Google Scholar 

  7. G. Graff, J. H. Stephenson, D. B. Glass, M. K. Haddox, and N. D. Goldberg, Activation of soluble splenic cell guanylate cyclase by prostaglandin endoperoxides and fatty acid hydro-peroxides, J. Biol. Chem. 253: 7662 (1978).

    CAS  PubMed  Google Scholar 

  8. C. J. Struck, and H. Glossmann, Soluble bovine adrenal cortex guanylate cyclase: Effect of sodium nitroprusside, nitrosamines, and hydrophobic ligands on activity, substrate specificity and cation requirement, Naunyn-Schmiedeberg’s Arch. Pharmacol. 304: 51 (1978).

    Article  CAS  Google Scholar 

  9. J. M. Braughler, C. K. Mittal, and F. Murad, Purification of soluble guanylate cyclase from rat liver, Proc. Natl. Acad. Sci. USA 76: 219 (1979).

    Article  ADS  CAS  Google Scholar 

  10. D. Leiber, and S. Harbon, The relationship between the carbachol stimulatory effect on cyclic GMP content and activation by fatty acid hydroperoxides of a soluble guanylate cyclase in the guinea pig myometrium, Mol. Pharmacol. 21: 654 (1982).

    CAS  Google Scholar 

  11. D. Wallach, and I. Pastan, Stimulation of membranous guanylate cyclase by concentrations of calcium that are in the physiological range, Biochem. Biophys. Res. Comm. 72: 859 (1976).

    Article  CAS  Google Scholar 

  12. J. Levilliers, F. Lecot. and J. Pairault, Modulation by substrate and cations of guanylate cyclase activity in detergent-dispersed plasma membranes from rat adipocytes, Biochem. Biophys. Res. Comm. 84: 727 (1978).

    Article  CAS  Google Scholar 

  13. S. Nagao, Y. Suzuki, Y. Watanabe, and Y. Nozawa, Activation by a calcium-binding protein of guanylate cyclase in Tetrahymena pyriformis, Biochem. Biophys. Res. Comm. 90: 261 (1979).

    Article  CAS  Google Scholar 

  14. N. Narayanan, and P. V. Sulakhe, Magnesium-and manganese-supported guanyalte cyclase in guinea pig heart: Subcellular distribution and some properties of the microsomal enzyme, Int. J. Biochem. 13: 1133 (1981).

    Article  CAS  Google Scholar 

  15. V. P. Whittaker, I. A. Michaelson, and R. J. A. Kirkland, The separation of synaptic vesicles from nerve-ending particles (“synaptosomes”), Biochem. J. 90: 293 (1964).

    Article  CAS  Google Scholar 

  16. K. Saito, S. Uchida, and H. Yoshida, Calcium binding of isolated synaptic membranes from rat cerebral cortex, Jap. J. Pharmacol. 22: 787 (1972).

    Article  CAS  Google Scholar 

  17. T. Asakawa, T. R. Russell, and R. J. Ho, Purification and succinylation of cyclic GMP from large volume samples and radioimmunoassay of succinyl cyclic GMP, Biochem. Biophys. Res. Comm. 68: 682 (1976).

    Article  CAS  Google Scholar 

  18. M. Yazawa, M. Sakuma, and K. Yagi, Calmodulins from muscles of marine invertebrates, scallop and sea anemone, J. Biochem. 87: 1313 (1980).

    Article  CAS  Google Scholar 

  19. R. W. Wallace, T. J. Lynch, E. A. Tallant, and W. Y. Cheung, Purification and characterization of an inhibitor protein of brain adenylate cyclase and cyclic nucleotide phosphodiesterase, J. Biol. Chem. 254: 377 (1978).

    Google Scholar 

  20. H. C. Ho, T. S. Teo, R. Desai, and J. H. Wang, Catalytic and regulatory properties of two forms of bovine heart cyclic nucleotide phosphodiesterase, Biochim. Biophys. Acta 429: 461 (1976).

    Article  CAS  Google Scholar 

  21. K. Enomoto, and T. Asakawa, Evidence for the presence of a GTP-depenent regulatory component of adenylate cyclase in myelin from rat brain, J. Neurochem. 40: 434 (1983).

    Article  CAS  Google Scholar 

  22. T. Murayama, and M. Ui, Loss of the inhibitory function of the guanine nucleotide regulatory component of adenylate cyclase due to its ADP ribosylation by islet-activating protein, pertussis toxin, in adipocyte membranes, J. Biol. Chem. 258: 3319 (1983).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Asakawa, T., Takano, M., Enomoto, K., Hayama, K. (1984). Ca2+-Activated, Fatty Acid-Dependent Guanylate Cyclase in Synaptic Plasma Membranes and Its Requirement for Ca2+ and Mg-GTP in the Activation. In: Kito, S., Segawa, T., Kuriyama, K., Yamamura, H.I., Olsen, R.W. (eds) Neurotransmitter Receptors. Advances in Experimental Medicine and Biology, vol 175. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-4805-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4805-4_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-4807-8

  • Online ISBN: 978-1-4684-4805-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics