Skip to main content

Modulation of Alpha2-Adrenergic Receptors of Rat Vas Deferens by Adenosine Receptors

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 175))

Abstract

It is generally considered that norepinephrine and ATP are co-stored in dense core vesicles in the sympathetic nerve terminals (1,2) and that the two substances are released together on stimulation (3–5). Furthermore, it was reported that the response of vas deferens induced by norepinephrine was augmented by adenosine (6). Adenosine in the synaptic cleft comes from ATP in the nerve terminals and also from the smooth muscles. We examined the effects of adenosine and its derivatives on adrenergic receptors in rat vas deferens and found that adenosine and its derivatives have a novel effect on presynaptic adrenergic α2 receptors through activation of adenosine receptors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. U. S. von Euler, T. Lishajko, and L. Stjarner, Catecholamine and adenosine triphosphate in isolated adrenergic nerve granules, Acta Physiol. Scand. 59: 495 (1963).

    Article  Google Scholar 

  2. A. D. Smith, Subcellular localization of noradrenaline in sympathetic neurons, Pharmacol. Reviews 24: 435 (1972).

    CAS  Google Scholar 

  3. W. W. Douglas and A. M. Poisner, Evidence that the secreting adrenal chromaffin cell releases catecholamines directly from ATP rich granules, J. Physiol. 183: 236 (1966).

    Article  CAS  Google Scholar 

  4. P. Stevens, R. L. Robison, K. Van Dyke, and R. E. Stitzel, Studies on the synthesis and release of ATP-3H in the isolated cat adrenal gland, J. Pharmacol. Exp. Therap. 181: 463 (1972).

    CAS  Google Scholar 

  5. C. Su, Neurogenic release of purine compounds in blood vessels, J. Pharmacol. Exp. Therap. 195: 159 (1975).

    CAS  Google Scholar 

  6. M. I. Hoick and B. H. Marks, Purine nucleotide and nucleoside interactions on normal and subsensitive alpha adrenoreceptor responses in guinea-pig vas deferens, J. Pharmacol. Exp. Therap. 205: 104 (1978).

    Google Scholar 

  7. Y. Watanabe, R. T. Lai, and H. Yoshida, Increase of 3H-clonidine binding sites induced by adenosine receptor agonists in rat vas deferens in vitro, Europ. J. Pharmacol. 86: 265 (1983).

    Article  Google Scholar 

  8. B. S. Tsai and R. T. Lefkowitz, Agonist specific effects of guanine nucleotides on alpha-adrenergic receptors in human platelets, Mol. Pharmacol. 16: 61 (1979).

    CAS  PubMed  Google Scholar 

  9. D. J. Kahn, J. C. Mitrius, and D. C. U’Prichard, Alpha-2 adrenergic receptors in neuroblastoma x glioma hybrid cells characterization with agonist and antagonist radioligands and relationship to adenylate cyclase, Mol. Pharmacol. 21: 17 (1982).

    CAS  PubMed  Google Scholar 

  10. B. B. Hoffman, D. M. Kilpatrick and R. J. Lefkowitz, Heterogeneity of radioligand binding to a-adrenergic receptors. Analysis of guanine nucleotide regulation of agonist binding in relation to receptor subtypes, J. Biol. Chem. 255: 4645 (1980).

    CAS  PubMed  Google Scholar 

  11. M. Rodbell, The role of hormone receptors and GTP-regulatory proteins in membrane transduction, Nature 284: 17 (1980).

    Article  ADS  CAS  Google Scholar 

  12. S. Uchida, K. Matsumoto, K. Takeyasu, H. Higuchi, and H. Yoshida, Molecular mechanism of the effects of guanine nucleotide and sulfhydryl reagent on muscarinic receptors in smooth muscles studied by radiation inactivation, Life Sci. 31: 201 (1982).

    Article  CAS  Google Scholar 

  13. Y. Watanabe, R. T. Lai, H. Maeda, and H. Yoshida, Reserpine and sympathetic denervation cause an increase of postsynaptic a -adrenoreceptors in rat vas deferens, Europ. J. Pharmacol. 86: 105 (1982).

    Article  Google Scholar 

  14. J. M. Lundberg, A. Anggard, J. Fahrenkrug, T. Hokfelt and V. Mutt, Vasoactive intestinal polypeptide in cholinergic neurons of exocrine glands: Functional significance of coexisting transmitters for vasodilation and secretion, Proc. Natl. Acad. Sci. USA 77: 1651 (1980).

    Article  ADS  CAS  Google Scholar 

  15. J. M. Lundberg, B. Hedlung, and T. Bartfai, Vasoactive intestinal polypeptide enhances muscarinic ligand binding in cat submandibular salivary gland, Nature 295: 147 (1982).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Watanabe, Y., Yoshida, H. (1984). Modulation of Alpha2-Adrenergic Receptors of Rat Vas Deferens by Adenosine Receptors. In: Kito, S., Segawa, T., Kuriyama, K., Yamamura, H.I., Olsen, R.W. (eds) Neurotransmitter Receptors. Advances in Experimental Medicine and Biology, vol 175. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-4805-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4805-4_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-4807-8

  • Online ISBN: 978-1-4684-4805-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics