Skip to main content

Evidence for Alpha2 Adrenergic Receptors in Bovine Cerebral Arteries

  • Chapter
  • First Online:
Book cover Neurotransmitter Receptors

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 175))

  • 57 Accesses

Abstract

Adrenergic innervation to cerebral arteries is thought to play an important role in controlling cerebral blood flow (1). Histochemical studies have revealed high concentrations of norepinephrine and rich adrenergic innervation from the superior cervical ganglion in the adventitia and outer border of the medial layer of cerebral arteries in various species (2,3). Isolated cerebral arteries are contracted by alpha adrenergic agonists in a dose dependent manner and this contraction is blocked by alpha adrenergic antagonists (4,5). Alpha adrenergic receptors have been classified into alpha and alpha2 subtypes (6,7). Sakakibara et al. (8) suggested that contraction of the isolated dog basilar artery is mediated by alpha receptors. In the present study, we attempted to characterize alph2 adrenergic receptors in bovine cerebral arteries using an alpha1 antagonist, [3H]prazosin and an alpha2 antagonist, [3H]yohimbine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. G. D’Alecy and E. O. Feigel, Sympathetic control of cerebral blood flow in dogs, Circ. Res. 31: 267 (1972).

    Article  Google Scholar 

  2. N. Ohgushi, Adrenergic fibers to the brain and spinal cord vessels in the dog, Archiv. fur Japanishe Chirurgie 37: 294 (1968).

    Google Scholar 

  3. B. Hartman and S. Udenfriend, The use of dopamine-β-hydroxylase as a marker for the central noradrenergic nervous system in rat brain, Proc. Natl. Acad. Sci. USA 69: 2722 (1972).

    Article  ADS  CAS  Google Scholar 

  4. L. Edvinsson and C. Owman, Pharmacological characterization of adrenergic alpha and beta receptors mediating the vasomotor responses of cerebral arteries in vitro, Circ. Res. 35: 835 (1974).

    Article  CAS  Google Scholar 

  5. S. P. Duckles and J. A. Bevan, Pharmacological characterization of adrenergic receptor of a rabbit cerebral artery in vitro, J. Pharmacol. Exp. Ther. 197: 371 (1976).

    CAS  PubMed  Google Scholar 

  6. S. Z. Langer, Presynaptic adrenoceptor and regulation of release, In: “The Release of Catecholamine from Adrenergic Neurons,” D. M. Panton, ed., Pergamon Press, Oxford, p. 59 (1979).

    Chapter  Google Scholar 

  7. K. Starke and S. Z. Langer, A note on terminology for presynap- tic receptors, In: “Presynaptic Receptors,” S. Z. Langer, K. Starke and M. L. Dubocovich, ed., Pergamon Press, Oxford, p. 1 (1979).

    Google Scholar 

  8. Y. Sakakibara, M. Fujiwara and I. Muramatsu, Pharmacological characterization of the alpha adrenoceptors of the dog basilar artery, Naunyn-Schimiedeberg’s Arch. Pharmacol. 319: 1 (1982).

    CAS  Google Scholar 

  9. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, Protein measurement with the folin phenol reagent, J. Biol. Chem. 193: 265 (1951).

    CAS  PubMed  Google Scholar 

  10. A. H. Friedman and J. N. Davis, Identification and characterization of adrenergic receptors and catecholamine-stimulated adenylate cyclase in hog pial membranes, Brain Res. 183: 89 (1980).

    Article  CAS  Google Scholar 

  11. S. I. Harik, V. K. Sharma, J. R. Wetherbee, R. H. Warren, and S. P. Banerjee, Adrenergic receptors of cerebral micro-vessels, Eur. J. Pharmacol. 61: 207 (1977).

    Article  Google Scholar 

  12. S. M. Bentley, G. M. Drew, and S. B. Whiting, Evidence for two distinct types of postsynaptic α-adrenoceptor, Br. J. Pharmacol. 61: 116P (1977).

    Google Scholar 

  13. P. B. M. W. M. Timmermans, H. Y. Kwa, and P. A. van Zwieten, Possible subdivision of postsynaptic α-adrenoceptors mediating pressor responses in the pithed rat, Naunyn-Schmiedeberg’s Arch. Pharmacol. 310: 189 (1979).

    Article  CAS  Google Scholar 

  14. S. Z. Langer, R. Massingham, and N. B. Shepperson, Presence of postsynaptic α2-adrenoceptors of predominantly extra-synaptic location in the vascular smooth muscle of the dog hind limb. Clin. Sci. 59: 225 (1980).

    Article  Google Scholar 

  15. S. Z. Langer and N. B. Shepperson, Recent development in vascular smooth muscle pharmacology: the post-synaptic α2-adrenoceptor, Trends Pharmacol. Sci. 3: 440 (1982).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Taniguchi, T., Fujiwara, M., Tsukahara, T., Handa, H. (1984). Evidence for Alpha2 Adrenergic Receptors in Bovine Cerebral Arteries. In: Kito, S., Segawa, T., Kuriyama, K., Yamamura, H.I., Olsen, R.W. (eds) Neurotransmitter Receptors. Advances in Experimental Medicine and Biology, vol 175. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-4805-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4805-4_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-4807-8

  • Online ISBN: 978-1-4684-4805-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics