Skip to main content

Differential Effects of Sodium Selenite and Methylmercury(II) on Membrane Permeability and DNA Replication in HeLa S3 Carcinoma Cells: A Preliminary Report Regarding the Modification of Organomercurial Toxicity by Selenium Compounds

  • Chapter
Nutritional and Toxicological Aspects of Food Safety

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 177))

Abstract

When viewed in terms of their concentration in the growth medium, sodium selenite and methylmercuric hydroxide — administered individually to HeLa S3 cells — are of equal efficacy in inhibiting DNA synthesis: the dose-response curves overlap and 50% residual DNA synthesis occurs at 6.13 µM of either chemical. A different picture, however, emerges if replication is expressed as a function of the actual amounts of toxicant bound per cell. Now, the dose-response curves do not overlap and Na2SeO3 is much more toxic than CH3HgOH: 50% inhibition of DNA replication exists at 5.37 × 10 −17 moles of Se bound per cell and at 3.63 × 10−15 moles of Hg bound per cell. Further, selenite is taken up by the cells more slowly than methylmercury and its (limiting) cellular concentration is below that of the organomercurial. Lastly, much higher levels of selenite in the growth medium are required to bring about the same degree of membrane damage as the one caused by methylmercury. These differential effects may have a bearing on the observation, well-known but thus far unexplained, that selenite and methylmercury are strikingly less toxic to animals when administered simultaneously than they are when administered individually: selenium may counteract the membrane-destabilizing characteristics of methylmercury and it may retard its binding to the cells. Data on the inhibition of DNA synthesis have been obtained when selenite and methylmercury are administered simultaneously to HeLa S3 cells in varied molar ratios. Best mutual protection appears to exist when the two chemicals are present in equimolar amounts or when there is a slight excess of selenite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, J., Hostmark, A. T., Forre, O., and von Kraemer Bryn, M., 1979, The influence of selenium on methyl mercury toxicity in rat hepatoma cells, human embryonic fibroblasts and human lymphocytes in culture, Acta Pharmacol, et toxicol. 45: 379.

    Article  CAS  Google Scholar 

  • Burke, R. F., Foster, K. A., Greenfield, P. M., and Kiker, K. W., 1974, Binding of simultaneously administered inorganic selenium and mercury to rat plasma protein, Proc. Soc. Exp. Biol. Med 145: 782.

    Google Scholar 

  • Eybl, V., Sykora, J., and Mertl, F., 1969, Einfluss von Natriumselenit, Natriumtellurit und Natriumsulfid auf Retention und Verteilung von Quecksilber bei Mausen, Arch. Toxicol 25: 296.

    Article  CAS  Google Scholar 

  • Ganther, H. E., Goudie, C., Sunde, M. L., Kopecky, M. J., Wagner, P., Oh, S.-H., and Hoekstra, W. G., 1972, Selenium: relation to decreased toxicity of methylmercury added to diets containing tuna, Science 175: 1122.

    Article  PubMed  CAS  Google Scholar 

  • Ganther, H. E., 1978, Modification of methylmercury toxicity and metabolism by selenium and vitamin E: possible mechanisms, Environ. Health Perspect 25: 71.

    Article  PubMed  CAS  Google Scholar 

  • Ganther, H. E., 1979, Metabolism of hydrogen selenide and methylated selenides, Adv. Nutr. Res 2: 107.

    CAS  Google Scholar 

  • Gruenwedel, D. W., and Davidson, N., 1966, Complexing and denaturation of DNA by methylmercuric hydroxide, J. Mol. Biol 21: 126.

    Article  Google Scholar 

  • Gruenwedel, D. W., and Fordan, B. L., 1978, Effects of methylmercury (II) on the viability of HeLa S3 cells, Toxicol. Appl. Pharmacol 46: 249.

    Article  PubMed  CAS  Google Scholar 

  • Gruenwedel, D. W., and Crulkshank, M. K., 1979a, Effect of methylmercury(II) on the synthesis of deoxyribonucleic acid, ribonucleic acid and protein in HeLa S3 cells, Biochem. Pharmacol 28; 651.

    Article  PubMed  CAS  Google Scholar 

  • Gruenwedel, D. W., and Cruikshank, M. K., 1979b, The influence of sodium selenite on the viability and intracellular synthetic activity (DNA, RNA, and protein synthesis) of HeLa S3 cells, Toxicol. Appl. Pharmacol 50: 1.

    Article  PubMed  CAS  Google Scholar 

  • Gruenwedel, D. W., Glaser, J. F., and Falk, R. H., 1979, A scanning electron microscope study of the surface features of HeLa S3 suspension-culture cells treated with methylmercury(II), J. Ultrastruct. Res. 68: 296.

    Google Scholar 

  • Gruenwedel, D. W. and Friend, D., 1980, Long-term effects of methylmercury(II) on the viability of HeLa S3 cells, Bull. Environm. Contam. Toxicol 25: 441.

    Article  CAS  Google Scholar 

  • Gruenwedel, D. W., 1981, Effect of methylmercury(II) on the size of HeLa S3 carcinoma cells, Virchows Arch. [Cell Pathol.] 37: 153.

    Article  CAS  Google Scholar 

  • Gruenwedel, D. W., Glaser, J. F., and Cruikshank, M. K., 1981, Binding of methylmercury(II) by HeLa S3 suspension-culture cells: intracellular methylmercury levels and their effect on DNA replication and protein synthesis, Chem.-Biol. Interact 36: 259.

    Article  PubMed  CAS  Google Scholar 

  • Iwata, H., Okamota, H., and Ohsawa, Y., 1973, Effect of selenium on methylmercury poisoning, Res. Commun. Chem. Path. Pharm 5: 673.

    PubMed  CAS  Google Scholar 

  • Iwata, H., Masukawa, T., Ito, H., and Hayashi, M., 1981, Involvement of tissue sulfhydryls in the formation of a complex of methylmercury with selenium, Biochem. Pharmacol 30: 3159.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, S. L., and Pond, W. G., 1974, Inorganic vs. organic mercury toxicity in growing rats: protection by dietary selenium but not zinc, Nutr. Repts. Internat 9, 135.

    CAS  Google Scholar 

  • Masukawa, T., Kito, H., Hayashi, M., and Iwata, H., 1982, Formation and possible role of bis(methylmercuric)selenide in rats treated with methylmercury and selenite, Biochem. Pharmacol 31: 75.

    Article  PubMed  CAS  Google Scholar 

  • Parizek, J., and Ostadalova, I., 1967, The protective effect of small amounts of selenite in sublimate intoxication, Eperientia 23: 142.

    Article  CAS  Google Scholar 

  • Parizek, J., 1978, Interactions between selenium compounds and those of mercury or cadmium, Environ. Health Perspect 25: 53.

    Article  PubMed  CAS  Google Scholar 

  • Potter, S. D., and Matrone, G., 1977, A tissue culture model for mercury-selenium interactions, Toxicol. Appl. Pharmacol 40: 201.

    Article  PubMed  CAS  Google Scholar 

  • Skerfving, S., 1978, Interaction between selenium and methyl-mercury, Environ. Health Perspect 25: 57.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, T. J., Rieders, F., and Kocsis, J. J., 1978, Toxicological interactions of mercury and selenium, Toxicol. Appl. Pharmacol 45: 347.

    Article  Google Scholar 

  • Yamane, Y., Fukino, H., Aida, Y., and Imagawa, M., 1977, Studies on the mechanism of protective effects of selenium against the toxicity of methylmercury, Chem. Pharm. Bull 25: 2831.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Gruenwedel, D.W. (1984). Differential Effects of Sodium Selenite and Methylmercury(II) on Membrane Permeability and DNA Replication in HeLa S3 Carcinoma Cells: A Preliminary Report Regarding the Modification of Organomercurial Toxicity by Selenium Compounds. In: Friedman, M. (eds) Nutritional and Toxicological Aspects of Food Safety. Advances in Experimental Medicine and Biology, vol 177. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4790-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4790-3_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4792-7

  • Online ISBN: 978-1-4684-4790-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics