Skip to main content

Kinetic Regulation of Catalytic and Transport Activities in Sarcoplasmic Reticulum ATPase

  • Chapter
The Enzymes of Biological Membranes

Abstract

The cytoplasmic Ca2+ concentration is generally several orders of magnitude lower than that of extracellular fluids. This gradient must be maintained by energy-dependent transport mechanisms located in the cell membrane. In addition, intracellular membranous structures may form compartments which serve as Ca2+ sinks and reservoirs inside the cell. In some tissues, in which specific functional controls require rapid Ca2+ delivery to, and sequestration from, the cytoplasm, these intracellular systems are developed to a highly differentiated and prominent degree. A prime example is the sarcoplasmic reticulum (SR) of fast striated muscles. The membrane of the sarcoplasmic reticulum can be isolated in vesicular form from muscle homogenates by differential centrifugation. When suspended in a medium containing ATP and Mg2+, these vesicles reduce the Ca2+ concentration of the medium from 10−4 M to less than 10−7 M, which is the level found in the cytosol of living muscle cells in a resting state. This was discovered, independently, by Hasselbach and Makinose (1962) and Ebashi and Lipman (1962).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, D., Blinks, J., and Prendergast, F., 1977, Aequorin luminescence: Relation of light emission to calcium concentration—A calcium-independent component, Science 195:996–998.

    PubMed  CAS  Google Scholar 

  • Barlogie, B., Hasselbach, W., and Makinose, M., 1971, Activation of calcium efflux by ADP and inorganic phosphate, FEBS Leu. 12:267–268.

    CAS  Google Scholar 

  • Bastide, F., Meissner, G., Fleischer, S., and Post, R. L., 1973, Similarity of the active site of phosphorylation of the ATPase for transport of sodium and potassium ions in kidney to that for transport of calcium ions in sarcoplasmic reticulum of muscle, J. Biol. Chem. 248:8385–8391.

    PubMed  CAS  Google Scholar 

  • Beil, F., Chak, D., and Hasselbach, W., 1977, Phosphorylation from inorganic phosphate and ATP synthesis of sarcoplasmic membranes, Eur. J. Biochem. 81:151–164.

    PubMed  CAS  Google Scholar 

  • Boyer, P., de Meis, L., and Carvalho, M., 1977, Dynamic reversal of enzyme carboxyl group phosphorylation as the basis of the oxygen exchange catalyzed by sarcoplasmic reticulum adenosine triphosphatase, Biochemistry 16:136–140.

    PubMed  CAS  Google Scholar 

  • Cantley, L., Josephson, L., Warner, R., Yanagisawa, M., Lechene, C., and Guidotti, G., 1977, Vanadate is a potent (Na,K)-ATPase inhibitor found in ATP derived from muscle, J. Biol. Chem. 252:7421–7423.

    PubMed  CAS  Google Scholar 

  • Cantley, L. C., Cantley, L. G., and Josephson, L., 1978, A characterization of vanadate interactions with the (Na,K)-ATPase. Mechanistic and regulatory implications, J. Biol. Chem. 253:7361–7368.

    PubMed  CAS  Google Scholar 

  • Carvalho, A., 1966, Binding of cations by microsomes from rabbit skeletal muscle, J. Cell. Physiol. 67:73–84.

    PubMed  CAS  Google Scholar 

  • Carvalho, A., 1972, Binding and release of cations by sarcoplasmic reticulum before and after removal of lipid, Eur. J. Biochem. 27:491–502.

    PubMed  CAS  Google Scholar 

  • Carvalho, M., de Souza, D., and de Meis, L., 1976, On a possible mechanism of energy conservation in sarcoplasmic reticulum membrane, J. Biol. Chem. 251:3629–3636.

    PubMed  CAS  Google Scholar 

  • Chaloub, R., Guimaraes-Motta, H., Verjovski-Almeida, S., de Meis, L., and Inesi, G., 1979, Sequential reactions in P, utilization for ATP synthesis by sarcoplasmic reticulum, J. Biol. Chem. 254:9464–9468.

    PubMed  CAS  Google Scholar 

  • Champeil, P., Bastide, F., Taupin, C., and Gary-Bobo, C. M., 1976, Spin labelled sarcoplasmic reticulum vesicles: Ca’ -induced spectral change, FEBS Letters 63:270–272.

    PubMed  CAS  Google Scholar 

  • Chevallier, J., and Buton, R., 1971, Calcium binding to the sarcoplasmic reticulum of rabbit skeletal muscle, Biochemistry 10:2733–2737.

    PubMed  CAS  Google Scholar 

  • Chiesi, M., and Inesi, G., 1979, The use of quench reagents for resolution of single transport cycles in sarcoplasmic reticulum, J. Biol. Chem. 254:10370–10377.

    PubMed  CAS  Google Scholar 

  • Chiesi, M., and Inesi, G., 1980, Adenosine triphosphate dependent fluxes of manganese and hydrogen ions in sarcoplasmic reticulum vesicles, Biochemistry 19:2912–2918.

    PubMed  CAS  Google Scholar 

  • Chiu, V., and Haynes, D., 1977, High and low affinity Ca2+ binding to sarcoplasmic reticulum—use of a high-affinity fluorescent calcium indicator, Biophys. J. 18:3–22.

    PubMed  CAS  Google Scholar 

  • Chiu, V., and Haynes, D., 1980, Rapid kinetic studies of active Ca2+ transport in sarcoplasmic reticulum, J. Membr. Biol. 56:219–239.

    PubMed  CAS  Google Scholar 

  • Coan, C., and Inesi, G., 1977, Calcium dependent effect of ATP on spin-labeled sarcoplasmic reticulum, J. Biol. Chem. 252:3044–3049.

    PubMed  CAS  Google Scholar 

  • Degani, C., and Boyer, P., 1973, A borohydride reduction method for characterization of the acyl phosphate linkage in proteins and its application to sarcoplasmic reticulum adenosine triphosphatase, J. Biol. Chem. 248:8222–8226.

    PubMed  CAS  Google Scholar 

  • de Meis, L., 1969, Ca2+ uptake and acetyl phosphatase of skeletal muscle microsomes, J. Biol. Chem. 244:3733–3739.

    PubMed  Google Scholar 

  • de Meis, L., 1971, Allosteric inhibition by alkali ions of the Ca2+ uptake and adenosine triphosphatase activity of skeletal muscle microsomes, J. Biol. Chem. 246:4764–4773.

    PubMed  Google Scholar 

  • de Meis, L., 1976, Regulation of steady state level of phosphoenzyme ATP synthesis in sarcoplasmic reticulum vesicles during reversal of the Ca2+ pump, J. Biol. Chem. 251:2055–2062.

    PubMed  Google Scholar 

  • de Meis, L., and Hasselbach, W., 1971, Acetylphosphate as substrate for Ca2+ uptake in skeletal muscle microsomes, J. Biol. Chem. 246:4759–4763.

    PubMed  Google Scholar 

  • de Meis, L., and Boyer, P., 1978, Induction by nucleotide triphosphate hydrolysis of a form of sarcoplasmic reticulum ATPase capable of medium phosphate–oxygen exchange in presence of calcium, J. Biol. Chem. 253:1556–1559.

    PubMed  Google Scholar 

  • de Meis, L., and Carvalho, M., 1974, Role of the Ca2+ concentration gradient in the adenosine 5’triphosphate-inorganic phosphate exchange catalyzed by sarcoplasmic reticulum, Biochemistry 13:5032–5038.

    PubMed  Google Scholar 

  • de Meis, L., and de Mello, M. C. F., 1973, Substrate regulation of membrane phosphorylation and calcium transport in the sarcoplasmic reticulum, J. Biol. Chem. 248:3691–3701.

    PubMed  Google Scholar 

  • de Meis, L., and Inesi, G., 1982, ATP synthesis by sarcoplasmic reticulum ATPase following Ca2+, pH, temperature, and water activity jumps, J. Biol. Chem. 257:1289–1294.

    PubMed  Google Scholar 

  • de Meis, L., and Masuda, H., 1974, Phosphorylation of the sarcoplasmic reticulum membrane by orthophosphate through two different reactions, Biochemistry 13:2057–2062.

    PubMed  Google Scholar 

  • de Meis, L., and Sorenson, M., 1975, ATP–P, exchange and membrane phosphorylation in sarcoplasmic reticulum vesicles: Activation by silver in the absence of a Ca2+ concentration gradient, Biochemistry 14:2739–2744.

    PubMed  Google Scholar 

  • de Meis, L., and Tume, R., 1977, A new mechanism by which an H2+ concentration gradient drives the synthesis of adenosine triphoshate, pH jump, and adenosine triphosphate synthesis by the Ca2+-dependent adenosine triphosphatase of sarcoplasmic reticulum, Biochemistry 16:4455–4463.

    PubMed  Google Scholar 

  • de Meis, L., and Vianna, A., 1979, Energy interconversion by the Ca2+-dependent ATPase of the sarcoplasmic reticulum, Annu. Rev. Biochem. 48:275–292.

    PubMed  Google Scholar 

  • de Meis, L., Martins, O., and Alves, E., 1980, Role of water, H2+s and temperature on the synthesis of ATP by the sarcoplasmic reticulum ATPase in the absence of a Ca2+ gradient, Biochemistry 19:4252–4261.

    PubMed  Google Scholar 

  • de Souza, D., and de Meis, L., 1976, Calcium and magnesium regulation of phosphorylation by ATP and ITP in sarcoplasmic reticulum vesicles, J. Biol. Chem. 251:6355–6359.

    PubMed  CAS  Google Scholar 

  • Dupont, Y., 1977, Kinetics and regulation of sarcoplasmic reticulum ATPase, Eur. J. Biochem. 72:185–190.

    PubMed  CAS  Google Scholar 

  • Dupont, Y., 1980, Occlusion of divalent cations in the phosphorylated calcium pump of sarcoplasmic reticulum, Eur. J. Biochem. 109:231–238.

    PubMed  CAS  Google Scholar 

  • Dupont, Y., 1982, Low-temperature studies of the sarcoplasmic reticulum calcium pump mechanism of calcium binding, Biochim. Biophys. Acta 688:75–87.

    PubMed  CAS  Google Scholar 

  • Dupont, Y., and Bennett, N., 1982, Vanadate inhibition of the Ca2+-dependent conformational change of the sarcoplasmic reticulum Ca2+-ATPase, FEBS Lett. 139:237–240.

    PubMed  CAS  Google Scholar 

  • Dupont, Y., and Leigh, J., 1978, Transient kinetics of sarcoplasmic reticulum Ca + Mg ATPase studied by fluorescence, Nature 273:396–398.

    PubMed  CAS  Google Scholar 

  • Ebashi, S., 1961, Calcium binding activity of vesicular relaxing factor, J. Biochem. (Tokyo) 50:236–244.

    CAS  Google Scholar 

  • Ebashi, S., and Lipmann, F., 1962, Adenosine triphosphate-linked concentration of calcium ions in a particulate fraction of rabbit muscle, J. Cell Biol. 14:389–400.

    PubMed  CAS  Google Scholar 

  • Fabiato, A., and Fabiato, F., 1979, Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells, J. Physiol. (Paris) 75:463–505.

    CAS  Google Scholar 

  • Fiehn, W., and Migala, A., 1971, Calcium binding to sarcoplasmic membranes, Eur. J. Biochem. 20:245–248.

    PubMed  CAS  Google Scholar 

  • Friedman, Z., and Makinose, M., 1970, Phosphorylation of skeletal muscle microsomes by acetylphosphate, FEBS Letters 11:69–72.

    PubMed  CAS  Google Scholar 

  • Froehlich, J., and Taylor, E., 1976, Transient state kinetic effects of calcium ion on sarcoplasmic reticulum adenosine triphosphatase, J. Biol. Chem. 251:2307–2315.

    PubMed  CAS  Google Scholar 

  • Gattass, C., and de Meis, L., 1975, Ca2+-dependent inhibitory effects of Na and K` on Ca++ -transport in sarcoplasmic reticulum vesicles, Biochim. Biophys. Acta 389:506–515.

    PubMed  CAS  Google Scholar 

  • Guimaraes-Motta, H., and de Meis, L., 1980, Pathway for ATP synthesis by sarcoplasmic reticulum ATPase, Arch. Biochem. Biophys. 203:395–403.

    Google Scholar 

  • Hammes, G., 1982, Unifying concept for the coupling between ion pumping and ATP hydrolysis or synthesis, Proc. Natl. Acad. Sci. USA 79:6881–6884.

    PubMed  CAS  Google Scholar 

  • Hasselbach, W., 1964, Relating factor and the relaxation of muscle, Progress in Biophysics and Mol. Biol. 14:167–222.

    CAS  Google Scholar 

  • Hasselbach, W., 1978, The reversibility of the sarcoplasmic calcium pump, Biochim. Biophys. Acta 515:23–53.

    PubMed  CAS  Google Scholar 

  • Hasselbach, W., and Makinose, M., 1962, ATP and active transport, Biochem. Biophys. Res. Commun. 7:132–136.

    PubMed  CAS  Google Scholar 

  • Haynes, D., 1983, Computer modeling of the Ca2+ -Mg++-ATPase pump of skeletal sarcoplasmic reticulum, Biophys. J. 41:233.

    Google Scholar 

  • Hill, T., and Eisenberg, E., 1981, Can free energy transduction be localized at some crucial part of the enzymatic cycle?, Quart. Rev. Biophys. 14:1–49.

    Google Scholar 

  • Hill, T., and Inesi, G., 1982, Equilibrium cooperative binding of calcium and protons by sarcoplasmic reticulum ATPase, Proc. Natl. Acad. Sci. USA 79:3978–3982.

    PubMed  CAS  Google Scholar 

  • Holloway, J., and Reilley, C., 1960, Metal chelate stability constants of aminopolycarboxylate ligands, Anal. Chem. 32:249–256.

    CAS  Google Scholar 

  • Ikemoto, N., 1974, The calcium binding sites involved in the regulation of the purified adenosine triphosphatase of the sarcoplasmic reticulum, J. Biol. Chem. 249:649–651.

    PubMed  CAS  Google Scholar 

  • Ikemoto, N., 1975, Transport and inhibitory calcium binding sites on the ATPase enzyme isolated from the sarcoplasmic reticulum, J. Biol. Chem. 250:7219–7224.

    PubMed  CAS  Google Scholar 

  • Ikemoto, N., 1976, Behavior of the Ca2+ transport sites linked with the phosphorylation reaction of ATPase purified from the sarcoplasmic reticulum, J. Biol. Chem. 251:7275–7277.

    PubMed  CAS  Google Scholar 

  • Ikemoto, N., 1982, Structure and function of the calcium pump protein of sarcoplasmic reticulum, Annu. Rev. Physiol. 44:297–317.

    PubMed  CAS  Google Scholar 

  • Ikemoto, N., Morgan, T., and Yamada, S., 1978, Ca2+ controlled conformational states in the Ca2+ transport enzyme of sarcoplasmic reticulum, J. Biol. Chem. 253:8027–8033.

    PubMed  CAS  Google Scholar 

  • Inesi, G., 1981, The sarcoplasmic reticulum of skeletal and cardiac muscle, in: Cell and Muscle Motility, Vol. 1 (R. Dowben and J. Shay, eds.), Plenum Publishing Corporation, New York, pp. 63–97.

    Google Scholar 

  • Inesi, G., and Almendares, J., 1968, Interaction of fragmented sarcoplasmic reticulum with 14C-ADP, 14C- ATP, and 32P-ATP. Effect of Ca and Mg, Arch. Biochem. Biophys. 126:733–735.

    PubMed  CAS  Google Scholar 

  • Inesi, G., and Scarpa, A., 1972, Fast kinetics of adenosine triphosphate Ca2+ uptake by frequented sarcoplasmic reticulum, Biochemistry 11:356–359.

    PubMed  CAS  Google Scholar 

  • Inesi, G., and Hill, T., 1983, The calcium and proton dependence of sarcoplasmic reticulum ATPase, Biophys. J., in press.

    Google Scholar 

  • Inesi, G., Goodman, J. J., and Watanabe, S., 1967, Effect of diethyl ether on the ATPase activity and calcium uptake of fragmented sarcoplasmic reticulum of rabbit skeletal muscle, J. Biol. Chem. 242:4637–4643.

    PubMed  CAS  Google Scholar 

  • Inesi, G., Lewis, D., and Murphy, A., 1984, Interdependence of H+, Ca2+ and P, (or vanodate) sites in sarcoplasmic reticulum ATPase, J. Biol. Chem. (in press).

    Google Scholar 

  • Inesi, G., Maring, E., Murphy, A., and McFarland, B., 1970, A study of the phosphorylated intermediate in sarcoplasmic reticulum ATPase, Arch. Biochem. Biophys. 138:285–294.

    PubMed  CAS  Google Scholar 

  • Inesi, G., Kurzmack, M., Coan, C., and Lewis, D., 1980a, Cooperative calcium binding and ATPase activation in sarcoplasmic reticulum vesicles, J. Biol. Chem. 255:3025–3031.

    CAS  Google Scholar 

  • Inesi, G., Kurzmack, M., Nakamoto, R., de Meis, L., and Bernhard, S., 1980b, Uncoupling of calcium control and phosphohydrolase activity in sarcoplasmic reticulum vesicles, J. Biol. Chem. 255:6040–6043

    CAS  Google Scholar 

  • Inesi, G., Watanabe, T., Coan, C., and Murphy, A., 1983, The mechanism of sarcoplasmic reticulum ATPase, Ann. N.Y. Acad. Sci. 402:515–534.

    Google Scholar 

  • Inesi, G., Lewis, D., and Murphy, A. J., 1984, Interdependence of H+, Ca2+, and P, (or vanadate) sites in sarcoplasmic reticulum ATPase, J. Biol. Chem. 259:996–1003.

    PubMed  CAS  Google Scholar 

  • Jencks, W., 1980, The utilization of binding energy in coupled vectorial processes, Adv. Enzymol. 51:75–106.

    PubMed  CAS  Google Scholar 

  • Kalbitzer, H., Stehlik, D., and Hasselbach, W., 1978, Binding of calcium and magnesium to sarcoplasmicreticulum vesicles as studied by manganese electron-paramagnetic resonance, Eur. J. Biochem. 82:245–255.

    PubMed  CAS  Google Scholar 

  • Kanazawa, T., 1975, Phosphorylation of solubilized sarcoplasmic reticulum by orthophosphate and its thermodynamic characteristics—the dominant role of entropy in the phosphorylation, J. Biol. Chem. 250:113–119.

    PubMed  CAS  Google Scholar 

  • Kanazawa, T., and Boyer, P., 1973, Occurrence and characteristics of a rapid exchange of phosphate–oxygen catalyzed by sarcoplasmic reticulum vesicles, J. Biol. Chem. 248:3163–3172.

    PubMed  CAS  Google Scholar 

  • Kanazawa, T., Yamada, S., Yamamoto, T., and Tonomura, Y., 1971, Reaction mechanism of the Ca - dependent ATPase of sarcoplasmic reticulum from skeletal muscle: V. Vectorial requirements for calcium and magnesium ions of three partial reations of ATPase: Formation and decomposition of a phosphorylated intermediate ATP-formation from ADP and the intermediate, J. Biochem. (Tokyo) 70:95–123.

    CAS  Google Scholar 

  • Knowles, A., and Racker, E., 1975, Formation of adenosine triphosphate from P, and adenosine diphosphate by purified Ca2+ -adenosine triphosphatase, J. Biol. Chem. 250:1949–1951.

    PubMed  CAS  Google Scholar 

  • Kolassa, N., Punzengruber, C., Suko, J., and Makinose, M., 1979, Mechanism of calcium-independent phosphorylation of sarcoplasmic reticulum ATPase by orthophosphate, FEBS Lett. 108:495–500.

    PubMed  CAS  Google Scholar 

  • Kurzmack, M., and Inesi, G., 1977, The initial phase of calcium uptake and ATPase activity of sarcoplasmic reticulum vesicles, FEBS Leu. 74:35–37.

    CAS  Google Scholar 

  • Kurzmack, M., Verjovski-Almeida, S., and Inesi, G., 1977, Detection of an initial burst of calcium translocation in sarcoplasmic reticulum, Biochem. Biophys. Res. Commun. 78:772–776.

    PubMed  CAS  Google Scholar 

  • Kurzmack, M., Inesi, G., Tal, N., and Bernhard, S., 1981, Transient-state kinetic studies on the mechanism of furylacryloylphosphatase-coupled calcium ion transport with sarcoplasmic reticulum adenosine triphosphatase, Biochemistry 20:486–491.

    PubMed  CAS  Google Scholar 

  • Lacapere, J., Gingold, M., Champeil, P., and Guillain, F., 1981, Sarcoplasmic reticulum ATPase phosphorylation from inorganic phosphate in the absence of a calcium gradient: Steady state and fluorescence studies, J. Biol. Chem. 256:2302–2306.

    PubMed  CAS  Google Scholar 

  • Madeira, V., 1978, Proton gradient formation during transport of Ca++ by sarcoplasmic reticulum, Arch. Biochem. Biophys. 185:316–325.

    PubMed  CAS  Google Scholar 

  • Makinose, M., 1966, Die Nucleosid-triphosphat, nucleosid-diphosphat-transphosphorylase-aktivitat der Vesikel des sarkoplasmatischen reticulums, Biochem. Zeitschrift 345:80–86.

    CAS  Google Scholar 

  • Makinose, M., 1967, Gibt es zwei phosphorylierte intermediate des aktiven calcium-transportes in den membranen des sarcoplasmatischen reticulums?, Pfluger’s Arch. Ges. Physiol. 294:82–83.

    Google Scholar 

  • Makinose, M., 1969, The phosphorylation of the membrane protein of the sarcoplasmic vesicles during active calcium transport, Eur. J. Biochem. 10:74–82.

    PubMed  CAS  Google Scholar 

  • Makinose, M., 1971, Calcium efflux dependent formation of ATP from ADP and orthophosphate by the membranes of the sarcoplasmic vesicles, FEBS Leu. 12:269–270.

    Google Scholar 

  • Makinose, M., 1972, Phosphoprotein formation during osmo-chemical energy conversion in the membrane of the sarcoplasmic reticulum, FEBS Lett. 25:113–115.

    PubMed  CAS  Google Scholar 

  • Makinose, M., and Hasselbach, W., 1965, Der einfluss von oxalat auf den calcium-transport isolierter vesikel des sarkoplasmatischen reticulum, Biochem. Zeitschrift 343:360–382.

    CAS  Google Scholar 

  • Makinose, M., and Hasselbach, W., 1971, ATP synthesis by the reverse of the sarcoplasmic calcium pump, FEBS Lett. 12:271–272.

    PubMed  CAS  Google Scholar 

  • Makinose, M., and The, R., 1965, Calcium-akkumulation und nucleosidtriphosphat-spaltung durch die vesikel des sarkoplasmatischen reticulum, Biochem. Zeitschrift 343:383–393.

    CAS  Google Scholar 

  • Martin, D., and Tanford, C., 1981, Phosphorylation of (Ca2+)-ATPase by inorganic phosphate: van’t Hoff analysis of enthalpy changes, Biochemistry 20:4597–4603.

    PubMed  CAS  Google Scholar 

  • Martonosi, A., 1969, Sarcoplasmic reticulum. VII. Properties of a phosphoprotein intermediate implicated in calcium transport, J. Biol. Chem. 244:613–620.

    PubMed  CAS  Google Scholar 

  • Martonosi, A., 1971, The structure and function of sarcoplasmic reticulum membranes, in: Biomembranes, Vol. 1 (L. Manson, ed.), Plenum Press, New York, pp. 191–256.

    Google Scholar 

  • Martonosi, A., and Feretos, R., 1964, Sarcoplasmic reticulum: I. The uptake of Ca++ by sarcoplasmic reticulum fragments, J. Biol. Chem. 239:648–658.

    PubMed  CAS  Google Scholar 

  • Martonosi, A., Lagwinska, E., and Oliver, M., 1974, Elementary processes in the hydrolysis of ATP by sarcoplasmic reticulum membranes, Ann. N.Y. Acad. Sci. 227:549–567.

    PubMed  CAS  Google Scholar 

  • Masuda, H., and de Meis, L., 1973, Phosphorylation of the sarcoplasmic reticulum membrane by orthophosphate. Inhibition by calcium ions, Biochemistry 12:4581–4585.

    PubMed  CAS  Google Scholar 

  • Masuda, H., and de Meis, L., 1977, Effect of temperature on the Ca++ transport ATPase of sarcoplasmic reticulum, J. Biol. Chem. 252:8567–8571.

    PubMed  CAS  Google Scholar 

  • Meissner, G., 1973, ATP and Ca2+ binding by the Ca2+ pump protein of sarcoplasmic reticulum, Biochim. Biophys. Acta 298:906–926.

    PubMed  CAS  Google Scholar 

  • Meissner, G., Conner, G., and Fleischer, S., 1973, Isolation of sarcoplasmic reticulum by zonal centrifugation and purification of Ca2+ -pump and Ca2+-binding proteins, Biochim. Biophys. Acta 298:246–269.

    PubMed  CAS  Google Scholar 

  • Murphy, A., 1978, Effects of divalent cations and nucleotides on the reactivity of the sulfhydryl groups of sarcoplasmic reticulum membranes, J. Biol. Chem. 253:385–389.

    PubMed  CAS  Google Scholar 

  • Nakamura, Y., and Tonomura, Y., 1978, Reaction mechanism of p-nitrophenylphosphatase of sarcoplasmic reticulum, J. Biochem. (Tokyo) 83:571–583.

    CAS  Google Scholar 

  • Neet, K., and Green, N., 1977, Kinetics of the cooperativity of the Ca++ -transporting adenosine triphosphatase of sarcoplasmic reticulum and the mechanism of the ATP interaction, Arch. Biochem. Biophys. 178:588–597.

    PubMed  CAS  Google Scholar 

  • Ogawa, Y., 1968, The apparent binding constant of glycoletherdiaminetetraacetic acid for calcium at neutral pH, J. Biochem. (Tokyo) 64:255–257.

    CAS  Google Scholar 

  • Pang, D., and Briggs, F., 1977, Effect of calcium and magnesium on binding of beta, gamma-methylene ATP to sarcoplasmic reticulum, J. Biol. Chem. 252:3262–3266.

    PubMed  CAS  Google Scholar 

  • Pick, U., 1982, The interaction of vanadate ions with the Ca-ATPase from sarcoplasmic reticulum, J. Biol. Chem. 257:6111–6119.

    PubMed  CAS  Google Scholar 

  • Pick, U., and Karlish, S., 1980, Indications for an oligomeric structure and for conformational changes in sarcoplasmic reticulum Ca2+-ATPase labeled selectively with fluorescein, Biochim. Biophys. Acta 626:255–261.

    PubMed  CAS  Google Scholar 

  • Pickart, C., and Jencks, W., 1982, Slow dissociation of ATP from the calcium ATPase, J. Biol. Chem. 257:5319–5322.

    PubMed  CAS  Google Scholar 

  • Plank, B., Hellman, G., Punzengruber, C., and Suko, J., 1979, ATP—P; and ITP—P, exchange by cardiac sarcoplasmic reticulum, Biochim. Biophys. Acta 550:259–268.

    PubMed  CAS  Google Scholar 

  • Prager, R., Punzengruber, C., Kolassa, N., Winkler, F., and Suko, J., 1979, Ionized and bound calcium inside isolated sarcoplasmic reticulum of skeletal muscle and its significance in phosphorylation of adenosine triphosphatase by orthophosphate, Eur. J. Biochem. 97:239–250.

    PubMed  CAS  Google Scholar 

  • Pucell, A., and Martonosi, A., 1971, Sarcoplasmic reticulum: XIV. Acetylphosphate and carbamylphosphate as energy sources for Ca++ transport, J. Biol. Chem. 246:3389–3397.

    PubMed  CAS  Google Scholar 

  • Punzengruber, C., Prager, R., Kolassa, N., Winkler, F., and Suko, J., 1978, Calcium gradient-dependent and calcium gradient-independent phosphorylation of sarcoplasmic reticulum by orthophosphate, Eur. J. Biochem. 92:349–359.

    PubMed  CAS  Google Scholar 

  • Ratkje, S., and Shamoo, A., 1980, ATP synthesis by Ca++ + Mg++ -ATPase in detergent solution at constant Ca++ levels, Biophys. J. 30:523–530.

    PubMed  CAS  Google Scholar 

  • Rauch, B., Chak, D., and Hasselbach, W., 1977, Phosphorylation by inorganic phosphate of sarcoplasmic membranes, Z. Naturforsch. Part C 32:828–834.

    CAS  Google Scholar 

  • Ribeiro, J., and Vianna, L., 1978, Allosteric modification by K+ of the (Ca2+ ++ Mg++)-dependent ATPase of sarcoplasmic reticulum, J. Biol. Chem. 253:3153–3157.

    PubMed  CAS  Google Scholar 

  • Ronzani, N., Migala, A., Hasselbach, W., 1979, Comparison between ATP-supported and GTP-supported phosphate turnover of the calcium-transporting sarcoplasmic reticulum membranes, Eur. J. Biochem. 101:593–606.

    PubMed  CAS  Google Scholar 

  • Rossi, B., Leone, F., Gache, C., and Lazdunski, M., 1979, Psuedosubstrates of the sarcoplasmic Ca++ATPase as tools to study the coupling between substrate hydrolysis and Ca2+ transport, J. Biol. Chem. 254:2302–2307.

    PubMed  CAS  Google Scholar 

  • Scarpa, A., Baldassare, J., and Inesi, G., 1972, The effect of calcium ionophores on fragmented sarcoplasmic reticulum, J. Gen. Physiol. 60:735–749.

    PubMed  CAS  Google Scholar 

  • Schmid, R., and Reilley, C., 1957, New complexon for titration of calcium in the presence of magnesium, Anal. Chem. 29:264–268.

    CAS  Google Scholar 

  • Schwartzenbach, G., Senn, H., and Anderegg, G., 1957, Komplexone. XXIX. Ein grosse Chelateffekt besonderer Azt., Hely. Chim. Acta 40:1186–1900.

    Google Scholar 

  • Scofano, H., Vieyra, A., and de Meis, L., 1979, Substrate regulation of the sarcoplasmic reticulum ATPase: Transient kinetic studies, J. Biol. Chem. 254:10227–10231.

    PubMed  CAS  Google Scholar 

  • Shigekawa, M., and Dougherty, J., 1978a, Reaction mechanism of Ca++-dependent ATP hydrolysis by skeletal muscle sarcoplasmic reticulum in the absence of added alkali metal salts. II. Kinetic properties of the phosphoenzyme formed at the steady state in high Mg++ and low Ca++ concentrations, J. Biol. Chem. 253:1451–1457.

    CAS  Google Scholar 

  • Shigekawa, M., and Dougherty, J., 1978b, Reaction mechanism of Ca++ -dependent ATP hydrolysis by skeletal muscle sarcoplasmic reticulum in the absence of added alkali metal salts. III. Sequential occurrence of ADP-sensitive and ADP-insensitive phosphoenzymes, J. Biol. Chem. 253:1458–1464.

    CAS  Google Scholar 

  • Smith, R., Zinn, K., and Cantley, L., 1980, A study of the vanadate-trapped state of the (Na,K)-ATPase. Evidence against interacting nucleotide site models, J. Biol. Chem. 255:9852–9859.

    PubMed  CAS  Google Scholar 

  • Sorenson, M., and de Meis, L., 1977, Effects of anions, pH and magnesium on calcium accumulation and release by sarcoplasmic reticulum vesicles, Biochim. Biophys. Acta 465:210–223.

    PubMed  CAS  Google Scholar 

  • Suko, J., and Hasselbach, W., 1976, Characterization of cardiac sarcoplasmic reticulum ATP—ADP exchange and phosphorylation of the calcium transport ATPase, Eur. J. Biochem. 64:123–130.

    PubMed  CAS  Google Scholar 

  • Sumida, M., Wang, T., Mandel, F., Froehlich, J., and Schwartz, A., 1978, Transient kinetics of Ca“ transport of sarcoplasmic reticulum, J. Biol. Chem. 253:8772–8777.

    PubMed  CAS  Google Scholar 

  • Tada, M., Yamamoto, T., and Tonomura, Y., 1978, Molecular mechanism of active calcium transport by sarcoplasmic reticulum, Physiol. Rev. 58:1–79.

    PubMed  CAS  Google Scholar 

  • Takakuwa, Y., and Kanazawa, T., 1979, Slow transition of phoshoenzyme from ADP-sensitive to ADP-insensitive forms in solubilized Ca+ + Mg++-ATPase of sarcoplasmic reticulum: Evidence for retarded dissociation of Ca++ from the phosphoenzyme, Biochem. Biophys. Res. Commun. 88:1209–1216.

    PubMed  CAS  Google Scholar 

  • Tanford, C., 1982a, Steady state of an ATP-driven calcium pump: Limitations on kinetic and thermodynamic parameters, Proc. Natl. Acad. Sci. USA 79:6161–6165.

    CAS  Google Scholar 

  • Tanford, C., 1982b, Mechanism of active transport: Free energy dissipation and free energy transduction, Proc. Natl. Acad. Sci. USA 79:6527–6531.

    CAS  Google Scholar 

  • Taylor, J., and Hattan, D., 1979, Biphasic kinetics of ATP hydrolysis by calcium-dependent ATPase of the sarcoplasmic reticulum of skeletal muscle, J. Biol. Chem. 254:440–2407.

    Google Scholar 

  • The, R., and Hasselbach, W., 1972a, The modification of the reconstituted sarcoplasmic ATPase by monovalent cations, Eur. J. Biochem. 30:318–324.

    CAS  Google Scholar 

  • The, R., and Hasselbach, W., 1972b, Properties of the sarcoplasmic ATPase reconstituted by oleate and lysolecithin after lipid depletion, Eur. J. Biochem. 28:357–363.

    CAS  Google Scholar 

  • Veno, T., and Sekine, T., 1981, A role of H+ flux in active Ca + transport in sarcoplasmic reticulum vesicles. I. Effect of an artificially imposed H+ gradient on Ca++ uptake, J. Biochem. (Tokyo) 89:1239–1246.

    Google Scholar 

  • Verjovski-Almeida, S., and de Meis, L., 1977, pH-induced changes in the reactions controlled by the low-and high-affinity Ca -binding sites in sarcoplasmic reticulum, Biochemistry 16:329–334.

    PubMed  CAS  Google Scholar 

  • Verjovski-Almeida, S., and Inesi, G., 1979, Fast-kinetic evidence for an activating effect of ATP on the Ca2+ transport of sarcoplasmic reticulum ATpase, J. Biol. Chem. 254:18–21.

    PubMed  CAS  Google Scholar 

  • Verjovski-Almeida, S., Kurzmack, M., and Inesi, G., 1978, Partial reactions in the catalytic and transport cycle of sarcoplasmic reticulum ATPase, Biochemistry 17:5006–5013.

    PubMed  CAS  Google Scholar 

  • Vianna, A., 1975, Interaction of calcium and magnesium in activating and inhibiting the nucleoside triphosphatase of sarcoplasmic reticulum vesicles, Biochim. Biophys. Acta 410:389–406.

    CAS  Google Scholar 

  • Watanabe, T., and Inesi, G., 1982a, Structural effects of substrate utilization on the ATPase chains of sarcoplasmic reticulum, Biochemistry 21:3254–3259.

    CAS  Google Scholar 

  • Watanabe, T., and Inesi, G., 1982b, The use of 2’,3’-O-(2,4,6-trinitrophenyl) adenosine 5’-triphoshate for studies of nucleotide interaction with sarcoplasmic reticulum vesicles, J. Biol. Chem. 257:11510–11516.

    CAS  Google Scholar 

  • Watanabe, T., Lewis, D., Nakamoto, R., Kurzmack, M., Fronticelli, C., and Inesi, G., 1981, Modulation of calcium binding in sarcoplasmic reticulum adenosinetriphosphatase, Biochemistry 20:6617–6625.

    PubMed  CAS  Google Scholar 

  • Weber, A., 1971a, Regulatory mechanisms of the calcium transport system of fragmented rabbit sarcoplasmic reticulum. I. The effect of accumulated calcium on transport and adenosine triphosphate hydrolysis, J. Gen. Physiol. 57:50–63.

    CAS  Google Scholar 

  • Weber, A., 1971b, Regulatory mechanisms of the calcium transport system of fragmented rabbit sarcoplasmic reticulum. II. Inhibition of outfux in calcium-free media, J. Gen. Physiol. 57:64–70.

    CAS  Google Scholar 

  • Weber, A., Herz, R., and Reiss, I., 1966, Study of the kinetics of calcium transport by isolated fragmented sarcoplasmic reticulum, Biochem. Zeitschrift 345:329–369.

    CAS  Google Scholar 

  • Yamada, S., and Tonomura, Y., 1972, Phosphorylation of the Ca++-Mg++-dependent ATPase of the sarcoplasmic reticulum coupled with cation translocation, J. Biochem. (Tokyo) 71:1101–1104.

    CAS  Google Scholar 

  • Yamada, S., and Tonomura, Y., 1973, Reaction mechanism of the Ca++ -dependent ATPase of sarcoplasmic reticulum from skeletal muscle. IX. Kinetic studies on the conversion of osmotic energy to chemical energy in the sarcoplasmic reticulum, J. Biochem. (Tokyo) 74:1091–1096.

    CAS  Google Scholar 

  • Yamada, S., Sumida, M., and Tonomura, Y., 1972, Reaction mechanism of the Ca++ -dependent ATPase of sarcoplasmic reticulum from skeletal muscle. VIII. Molecular mechanism of the conversion of osmotic energy to chemical energy in the sarcoplasmic reticulum, J. Biochem. (Tokyo) 72:1537–1548.

    CAS  Google Scholar 

  • Yamamoto, T., and Tonomura, Y., 1967, Reaction mechanism of the Ca++ -dependent ATPase of sar- coplasmic reticulum from skeletal muscle. I. Kinetic studies, J. Biochem. (Tokyo) 62:558–575.

    CAS  Google Scholar 

  • Yamamoto, T., and Tonomura, Y., 1968, Reaction mechanism of the Ca++ -dependent ATPase of sarcoplasmic reticulum from skeletal muscle. II. Intermediate formation of phosphoryl protein, J. Biochem. (Tokyo) 64:137–145.

    CAS  Google Scholar 

  • Yates, D., and Duance, V., 1976, The binding of nucleotides and bivalent cations to the calcium-andmagnesium ion-dependent adenosine triphosphatase from rabbit muscle sarcoplasmic reticulum, Biochem. J. 159:719–728.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Inesi, G., de Meis, L. (1985). Kinetic Regulation of Catalytic and Transport Activities in Sarcoplasmic Reticulum ATPase. In: Martonosi, A.N. (eds) The Enzymes of Biological Membranes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4601-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4601-2_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4603-6

  • Online ISBN: 978-1-4684-4601-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics