Skip to main content

Bacterial Amino Acid Transport Systems

  • Chapter
The Enzymes of Biological Membranes

Abstract

The roles of the cell membrane as both a permeability barrier to foreign substances and as a selective filter which admits nutrient molecules have been recognized as fundamentally important to animal physiology since the first decade of this century. It was not until the 1950’s, however, that microbiologists recognized that bacteria possess membrane transport systems, distinct from their metabolic enzymes, that mediate the uptake of amino acids and other nutrients. The work of Cohen and Monod (1957) established modern research on bacterial membrane transport. While much of this early work focused on transport of sugars, Gale provided the first evidence for accumulation of amino acids by bacteria during this era (Gale, 1947, 1954).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aksamit, R. R., Howlett, B. J., and Koshland, D. E., 1975, Soluble and membrane-bound aspartatebinding activities in Salmonella typhimurium, J. Bacteriol. 123: 1000–1005.

    PubMed  CAS  Google Scholar 

  • Amanuma, H., and Anraku, Y., 1974, Transport of sugars and amino acids in bacteria. XII. Substrate specificities of the branched chain amino acid-binding protein of Escherichia coli, J. Biol. Chem. (Tokyo) 76: 1165–1173.

    CAS  Google Scholar 

  • Amanuma, H., Itoh, J., and Anraku, Y., 1976, Transport of amino acids and sugars. XVII. On the existence and nature of substrate amino acids bound to purified branched chain amino acid-binding proteins of Escherichia coli, J. Biol. Chem. (Tokyo) 79: 1167–1182.

    CAS  Google Scholar 

  • Amanuma, H., Motojima, K., Yamaguchi, A., and Anraku, Y., 1977, Solubilization of a functionally active proline carrier from membrane of Escherichia coliwith an organic solvent, Biochem. Biophys. Res. Commun. 74: 366–373.

    PubMed  CAS  Google Scholar 

  • Ames, G. F.-L., 1964, Uptake of amino acids in Salmonella typhimurium, Arch. Biochem. Biophys. 104: 1–18.

    PubMed  CAS  Google Scholar 

  • Ames, G. F.-L., 1972, Components of histidine transport, in: Membrane Research, First ICN-UCLA Symp. Mol. Biol. ( C. F. Fox, ed.), Academic Press, New York, pp. 409–426.

    Google Scholar 

  • Ames, G. F.-L., 1974, Two methods for the assay of amino acid transport in bacteria, Meth. Enzymol. 32: 843–856.

    PubMed  CAS  Google Scholar 

  • Ames, G. F.-L., and Higgins, C. F., 1983, The organization, mechanism of action, and evolution of periplasmic transport systems, Trends Biochem. Sci. 8: 97–100.

    CAS  Google Scholar 

  • Ames, G. F.-L., and Lever, J. E., 1970, Components of histidine transport: Histidine-binding proteins and hisPprotein, Proc. Natl. Acad. Sci. USA 66: 1096–1103.

    PubMed  CAS  Google Scholar 

  • Ames, G. F.-L., and Lever, J. E., 1972, The histidine binding protein J is a component of histidine transport, J. Biol. Chem. 247: 4309–4316.

    PubMed  CAS  Google Scholar 

  • Ames, G. F.-L., and Nikaido, K., 1978, Identification of a membrane protein as a histidine transport component in Salmonella typhimurium, Proc. Natl. Acad. Sci. USA 75: 5447–5451.

    PubMed  CAS  Google Scholar 

  • Ames, G. F.-L., and Roth, J. R., 1968, Histidine and aromatic permeases of Salmonella typhimurium, J. Bacteriol. 96: 1742–1749.

    PubMed  CAS  Google Scholar 

  • Ames, G. F.-L., and Spudich, E. N., 1976, Protein-protein interaction in transport: Periplasmic histidinebinding protein J interacts with P protein, Proc. Natl. Acad. Sci. USA 73: 1887–1891.

    Google Scholar 

  • Ames, G. F.-L., Noel, K. D., Taber, H., Spudich, E. N., Nikaido, K., Afong, J., and Ardeshir, F., 1977, Fine-structure map of the histidine transport genes in Salmonella typhimurium, J. Bacteriol. 129: 1289–1297.

    PubMed  CAS  Google Scholar 

  • Anderson, J. J., and Oxender, D. L., 1977, Escherichia colimutants lacking binding proteins and other components of the branched-chain amino acid transport systems, J. Bacteriol. 130: 384–392.

    CAS  Google Scholar 

  • Anderson, J. J., and Oxender, D. L., 1978, Genetic separation of high-and low-affinity transport systems for branched chain amino acids in Escherichia coli, J. Bacteriol. 136: 168–174.

    PubMed  CAS  Google Scholar 

  • Anderson, J. J., Quay, S. C., and Oxender, D. L., 1976, Mapping of two loci affecting the regulation of branched chain amino acid transport in Escherichia coli, J. Bacteriol. 126: 80–90.

    PubMed  CAS  Google Scholar 

  • Anderson, R. R., Menzel, R., and Roth, J., 1980, Biochemistry and regulation of a second L-proline transport system in Salmonella typhimurium, J. Bacteriol. 141: 1071–1076.

    PubMed  CAS  Google Scholar 

  • Anraku, Y., 1968a, Transport of sugars and amino acids. I. Purification and specificity of the galactose-and leucine-binding proteins, J. Biol. Chem. 243: 3116–3122.

    CAS  Google Scholar 

  • Anraku, Y., 1968b, Transport of sugars and amino acids in bacteria. II. Properties of galactose-and leucine-binding proteins, J. Biol. Chem. 243: 3128–3135.

    CAS  Google Scholar 

  • Anraku, Y., 1980, Transport and utilization of amino acids in bacteria, in: Microorganisms and Nitrogen Sources( J. W. Payne, ed.), John Wiley and Sons, New York, pp. 9–34.

    Google Scholar 

  • Anraku, Y., and Heppel, L. A., 1967, On the nature of the changes induced in Escherichia coliby osmotic shock, Fed. Proc. Fed. Am. Soc. Exp. Bio. 26: 393.

    Google Scholar 

  • Anraku, Y., Kobayashi, H., Amanuma, H., and Yamaguchi, A., 1973, Transport of sugars and amino acids in bacteria. VII. Characterization of the reaction of restoration of active transport mediated by binding protein, J. Biochem. (Tokyo) 74: 1249–1261.

    CAS  Google Scholar 

  • Antonov, V. K., Arsen’eva, E. L., Gavrilova, N. A., Ginodman, L. M., and Krylova, Y. I., 1974, Novyisposob vydeleniia i nekotorye svoistva leitsinsviazyraivschchego belka iz kishechnoi palochki, Biokhimiya 38: 1088–1091.

    Google Scholar 

  • Antonov, V. K., Alexandrov, S. L., and Vorotyntseva, T. I., 1976, Reversible association as a possible regulatory mechanism for controlling the activity of the nonspecific leucine-binding protein from Escherichia coli, Adv. Enzyme Reg. 14: 269.

    CAS  Google Scholar 

  • Ardeshir, F., and Ames, G. F.-L., 1981, Cloning of the histidine transport genes from Salmonella typhimuriumand characterization of an analogous system in Escherichia coli, J. Supramol. Struct. 13: 117–130.

    Google Scholar 

  • Ardeshir, F., Higgins, C. F., and Ames, G. F.-L., 1981, Physical map of the Salmonella typhimuriumhistidine transport operon: Correlation with the genetic map, J. Bacteriol. 147: 401–409.

    PubMed  CAS  Google Scholar 

  • Ayling, P. D., 1981, Methionine sulfoxide is transported by high-affinity methionine and glutamine transport systems in Salmonella typhimurium, J. Bacteriol. 148: 514–520.

    PubMed  CAS  Google Scholar 

  • Ayling, P. D., Mojica, A. T., and Klopotowski, T., 1979, Methionine transport in Salmonella ryphimurium: Evidence for at least one low-affinity transport system, J. Gen. Microbiol. 114: 227–246.

    PubMed  CAS  Google Scholar 

  • Baptist, E. W., and Kredich, N. M., 1977, Regulation of L-cystine transport in Salmonella typhimurium, J. Bacteriol. 131: 111–118.

    PubMed  CAS  Google Scholar 

  • Barash, H., and Halpern, Y. S., 1975, Purification and properties of glutamate binding protein from the periplasmic space of Escherichia coliK-12, Biochim. Biophys. Acta 386: 168–180.

    PubMed  CAS  Google Scholar 

  • Bavoil, P., Hofnung, M., and Nikaido, H., 1980, Identification of a cytoplasmic membrane-associated component of the maltose transport system of Escherichia coli, J. Biol. Chem. 255: 8366–8369.

    PubMed  CAS  Google Scholar 

  • Berger, E. A., 1973, Different mechanisms of energy coupling for the active transport of proline and glutamine in Escherichia coli, Proc. Natl. Acad. Sci. USA 70: 1514–1518.

    PubMed  CAS  Google Scholar 

  • Berger, E. A., and Heppel, L. A., 1972, A binding protein involved in the active transport of cystine and diaminopimelic acid in Escherichia coli, J. Biol. Chem. 247: 7684–7694.

    PubMed  CAS  Google Scholar 

  • Berger, E. A., and Heppel, L. A., 1974, Different mechanisms of energy coupling for the shock-sensitive and shock-resistant amino acid permeases of Escherichia coli, J. Biol. Chem. 249: 7747–7755.

    PubMed  CAS  Google Scholar 

  • Blobel, G., and Dobberstein, B., 1975a, Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma, J. Cell. Biol. 67: 835–851.

    CAS  Google Scholar 

  • Blobel, G., and Dobberstein, B., 1975b, Transfer of proteins across membranes. II. Reconstitution of functional rough microsomes from heterologous components, J. Cell. Biol. 67: 852–862.

    CAS  Google Scholar 

  • Boezi, J. A., and Demoss, R. D., 1961, Properties of a tryptophan transport system in Escherichia coli, Biochim. Biophys. Acta 49: 471–484.

    CAS  Google Scholar 

  • Boos, W., 1974, Bacterial transport, Annu. Rev. Biochem. 43: 123–146.

    PubMed  CAS  Google Scholar 

  • Booth, I. R., and Hamilton, W. A., 1980, Energetics of bacterial amino acid transport, in: Microorganisms and Nitrogen Sources( J. W. Payne, ed.), J. Wiley and Sons, New York, pp. 171–207.

    Google Scholar 

  • Brenner, M., and Ames, B. N., 1971, The histidine operon and its regulation, in: Metabolic Regulation( H. J. Vogel, ed.), Academic Press, New York, pp. 349–387.

    Google Scholar 

  • Britten, R. J., and McClure, F. T., 1962, The amino acid pool of Escherichia coli, Bacteriol. Rev. 26: 292–299.

    PubMed  CAS  Google Scholar 

  • Brown, K. D., 1971, Maintenance and exchange of the aromatic amino acid pool in Escherichia coli, J. Bacteriol. 106: 70–81.

    PubMed  CAS  Google Scholar 

  • Buchel, D. E., Gronenborn, B., and Muller-Hill, B., 1980, Sequence of the lactose permease gene, Nature 283: 541–545.

    PubMed  CAS  Google Scholar 

  • Burrous, S. E., and Demoss, R. D., 1963, Studies on the tryptophan permease in Escherichia coli, Biochim. Biophys. Acta 73: 623–637.

    PubMed  CAS  Google Scholar 

  • Celis, R. T. F., 1977, Properties of an Escherichia coliK12 mutant defective in the transport of arginine and ornithine, J. Bacteriol. 130: 1234–1243.

    PubMed  CAS  Google Scholar 

  • Celis, R. T. F., 1981, Chain terminating mutants affecting a periplasmic binding protein involved in the active transport of arginine and ornithine in Escherichia coli, J. Biol. Chem. 256: 773–779.

    PubMed  CAS  Google Scholar 

  • Celis, R. T. F., 1982, Mapping of two loci affecting the synthesis and structure of a periplasmic protein involved in arginine and ornithine transport in Escherichia coliK-12, J. Bacteriol. 151: 1314–1319.

    PubMed  CAS  Google Scholar 

  • Celis, R. T. F., Rosenfeld, H. J., and Maas, W. K., 1973, A mutant of Escherichia coliK12 deficient in the transport of basic amino acids, J. Bacteriol. 116: 619–626.

    PubMed  CAS  Google Scholar 

  • Christensen, H. N., 1975, Recognition sites for material transport and information transfer, Curr. Top. Membr. Trans. 6: 227–258.

    CAS  Google Scholar 

  • Christensen, H. N., 1982, The analog inhibition strategy for discriminating similar transport systems: Is it succeeding?, in: Membranes and Transport, Vol. 2 ( A. Martonosi, ed.), Plenum Press, New York, pp. 145–151.

    Google Scholar 

  • Cohen, G. N., and Monod, J., 1957, Bacterial permeases, Bacteriol. Rev. 21: 169–194.

    PubMed  CAS  Google Scholar 

  • Condamine, H., 1971, Sur la régulation de la production de proline chez E. coliK-12, Ann. Inst. Pasteur (Paris) 120: 126–143.

    CAS  Google Scholar 

  • Cosloy, S. D., 1973, D-Serine transport system in Escherichia coliK-12, J. Bacteriol. 114: 679–684.

    PubMed  CAS  Google Scholar 

  • Cowell, J. L., 1974, Energization of glycylglycine transport in Escherichia coli, J. Bacteriol. 120: 139–146.

    PubMed  CAS  Google Scholar 

  • Csonka, L. A., 1982, A third L-proline permease in Salmonella typhimuriumwhich functions in media of elevated ionic strength, J. Bacteriol. 151: 1433–1443.

    PubMed  CAS  Google Scholar 

  • Daniels, C. J., 1981, Synthesis and processing of the periplasmic leucine transport proteins of Escherichia coli, Ph.D. thesis, The University of Michigan, Ann Arbor, Michigan.

    Google Scholar 

  • Daniels, C. J., Anderson, J. J., Landick, R. C., and Oxender, D. L., 1980, The in vitrosynthesis and processing of the branched chain amino acid binding proteins, J. Supramol. Struct. 14: 305–311.

    PubMed  CAS  Google Scholar 

  • Daniels, C. J., Bole, D. G., Quay, S. C., and Oxender, D. L., 1981, Role for membrane potential in the secretion of protein into the periplasm in Escherichia coli, Proc. Natl. Acad. Sci. USA 78: 5396–5400.

    PubMed  CAS  Google Scholar 

  • DeBusk, R. M., and DeBusk, D. E., 1980, Physiological and regulatory properties of the general amino acid transport system of Neurospora crassa, J. Bacteriol. 143: 188–197.

    PubMed  CAS  Google Scholar 

  • Dills, S. S., Apperson, A., Schmidt, M. R., and Saier, M. H., 1980, Carbohydrate transport in bacteria, Microbiol. Rev. 44: 385–418.

    PubMed  CAS  Google Scholar 

  • Edwards, R. M., and Yudkin, M. D., 1982, Location of the gene for the low-affinity tryptophan-specific permease of E. coli, Biochem. J. 204: 617–619.

    PubMed  CAS  Google Scholar 

  • Ehring, R., Beyreuther, K., Wright, J. K., and Overath, P., 1980, In vitroand in vivoproducts of the Escherichia colilactose permease gene are identical, Nature 283: 537–540.

    CAS  Google Scholar 

  • Enequist, H. G., Hirst, T. R., Harayama, S., Hardy, S. J. S., and Randall, L. L., 1981, Energy is required for maturation of exported proteins in Escherichia coli, Eur. J. Biochem. 116: 227–233.

    PubMed  CAS  Google Scholar 

  • Foster, D. L., Garcia, M. L., Newman, M. J., Patel, L., and Kaback, H. R., 1982, Lactose—proton symport by purified laccarrier protein, Biochemistry 21: 5634–5638.

    PubMed  CAS  Google Scholar 

  • Frank, L., and Hopkins, I., 1969, Sodium-stimulated transport of glutamate in Escherichia coli, J. Bacteriol. 100: 329–336.

    PubMed  CAS  Google Scholar 

  • Furlong, C. E., and Schellenberg, G. D., 1980, Characterization of membrane proteins involved in transport, in: Microoganisms and Nitrogen Sources( J. W. Payne, ed.), John Wiley and Sons, New York, pp. 89–123.

    Google Scholar 

  • Furlong, C. E., and Weiner, J. H., 1970, Purification of a leucine-specific binding protein from Escherichia coli, Biochem. Biophys. Res. Commun. 38: 1076–1083.

    PubMed  CAS  Google Scholar 

  • Furlong, C. E., Cirakoglu, C., Willis, R. C., and Santy, P. A., 1973, A simple preparative polyacrylamide disc gel electrophoresis apparatus: Purification of three branched chain amino acid binding proteins from Escherichia coli, Anal. Biochem. 51: 297–311.

    PubMed  CAS  Google Scholar 

  • Futai, M., 1974, Orientation of membrane vesicles from Escherichia coliprepared by different procedures, J. Membr. Biol. 15: 15–28.

    PubMed  CAS  Google Scholar 

  • Gale, E. F., 1947, The assimilation of amino acids by bacteria. 1. The passage of certain amino acids across the cell wall and their concentration in the internal environment of Streptococcus faecalis, J. Gen. Microbiol. 1: 53–76.

    PubMed  CAS  Google Scholar 

  • Gale, E. F., 1954, The accumulation of amino acids within staphylococcal cells, in: Active Transport and Secretions, Symposia of the Society for Experimental Biology, Vol. VIII, Academic Press, New York, pp. 242–253.

    Google Scholar 

  • Garcia, M. L., Patel, L., Padan, E., and Kaback, H. R., 1982, Mechanism of lactose transport in Escherichia colimembrane vesicles: Evidence for the involvement of histidine residues in the response of the laccarrier to the proton electrochemical gradient, Biochemistry 21: 5800–5805.

    PubMed  CAS  Google Scholar 

  • Gay, N. J., and Walker, J. E., 1981a, The atpoperon: Nucleotide sequence of the region encoding the a-subunit of Escherichia coliATP-synthase, Nucleic Acid Res. 9: 2187–2194.

    CAS  Google Scholar 

  • Gay, N. J., and Walker, J. E., 1981b, The atpoperon: Nucleotide sequence of the promoter and the genes for the membrane proteins, and the delta subunit of Escherichia coliATP-synthase, Nucleic Acid Res. 9: 3919–3926.

    CAS  Google Scholar 

  • Gilbert, W., Maizels, N., and Maxam, A., 1974, Sequences of controlling regions of the lactose operon, Cold Spring Harbor Symp. Quant. Biol. 38: 845–855.

    PubMed  CAS  Google Scholar 

  • Gilson, E., Higgins, C. F., Hofnung, M., Ames, G. F.-L., and Nikaido, H., 1982a, Extensive homology between membrane-associated components of histidine and maltose transport systems of Salmonella typhimuriumand Escherichia colt, J. Biol. Chem. 257: 9915–9918.

    CAS  Google Scholar 

  • Gilson, E., Nikaido, H., and Hofnung, M., 1982b, Sequence of the malKgene in Escherichia coltK-12, Nucleic Acids Res. 10: 7449–7458.

    CAS  Google Scholar 

  • Grenson, M., and Hon, C., 1972, Ammonia inhibition of the general amino acid permease and its suppression in NADPH-specific glutamate dehydrogenaseless mutants of Saccharomyces cerevisiae, Biochem. Biophys. Res. Commun. 48: 749–756.

    PubMed  CAS  Google Scholar 

  • Guardiola, J., DeFelice, M., Klopotowski, T., and Iaccarino, M., 1974a, Mutation affecting the different transport systems for isoleucine, leucine, and valine in Escherichia coltK-12, J. Bacteriol. 117: 382–392.

    CAS  Google Scholar 

  • Guardiola, J., DeFelice, M., Klopotowski, T., and Iaccarino, M., 1974b, Multiplicity of isoleucine, leucine, and valine transport systems in Escherichia coltK-12, J. Bacteriol. 117: 393–405.

    CAS  Google Scholar 

  • Gunsalus, R. P., and Yanofsky, C., 1980, Nucleotide sequence and expression of Eshcerichia colt rrpr: The structural gene for the trpaporepressor, Proc. Natl. Acad. Sci. USA 77: 7117–7121.

    PubMed  CAS  Google Scholar 

  • Gutowski, S. J., and Rosenberg, H., 1976, Energy coupling to active transport in anaerobically grown mutants of Escherichia coltK-12, Biochem. J. 154: 731–734.

    PubMed  CAS  Google Scholar 

  • Halpern, Y. S., 1974, Genetics of amino acid transport in bacteria, Annu. Rev. Genet. 8: 103–133.

    PubMed  CAS  Google Scholar 

  • Harrison, L. I., Christensen, H. N., Handlogten, M. E., Oxender, D. L., and Quay, S. C., 1975, Transport of L-4-azaleucine in Escherichia colt, J. Bacteriol. 122: 957–965.

    PubMed  CAS  Google Scholar 

  • Higgins, C. F., and Ames, G. F.-L., 1981, Two periplasmic binding proteins which interact with a common membrane receptor show extensive homology: Complete nucleotide sequences, Proc. Natl. Acad. Sci. USA 78: 6038–6042.

    PubMed  CAS  Google Scholar 

  • Higgins, C. F., and Ames, G. F.-L., 1982, Regulatory regions of two transport operons under nitrogen control: Nucleotide sequences, Proc. Natl. Acad. Sci. USA 79: 1083–1087.

    PubMed  CAS  Google Scholar 

  • Higgins, C. F., Haag, P. D., Nikaido, K., Ardeshir, F., Garcia, G., and Ames, G. F.-L., 1982a, Complete nucleotide sequence and identification of membrane components of the histidine transport operon of Salmonella typhimurium, Nature 298: 723–727.

    CAS  Google Scholar 

  • Higgins, C. F., Ames, G. F.-L., Barnes, W. M., Clement, J. M., and Hofnung, M., 1982b, A novel intercistronic regulatory element of prokaryotic operons, Nature 298: 760–762.

    CAS  Google Scholar 

  • Ho, C., Giza, Y., Takahashi, S., Ugen, K. E., Cotlam, P. F., and Dowd, S. R., 1980, A proton nuclear magnetic resonance investigation of histidine binding protein J of Salmonella typhimurium: A model for transport of L-histidine across the cytoplasmic membrane, J. Supramol. Struct. 13: 131–143.

    PubMed  CAS  Google Scholar 

  • Hogg, R. W., 1981, The amino acid sequence of the histidine binding protein of Salmonella typhimurium, J. Biol. Chem. 256: 1935–1939.

    PubMed  CAS  Google Scholar 

  • Hogg, R. W., and Hermondson, M. A., 1977, Amino acid sequence of the L-arabinose-binding protein from Escherichia coltB/r, J. Biol. Chem. 252: 5135–5141.

    PubMed  CAS  Google Scholar 

  • Hong, J.-S., and Hunt, A. G., 1980, The role of acetyl phosphate in active transport, J. Supramol. Struct. Suppl. 4, Abst. No. 189, p. 77.

    Google Scholar 

  • Hong, J.-S., Hunt, A. G., Masters, P. S., and Lieberman, M. A., 1979, Requirement for acetyl phosphate for the binding protein-dependent transport systems in Escherichia coli, Proc. Natl. Acad. Sci. USA 76: 1213–1217.

    PubMed  CAS  Google Scholar 

  • Hoshino, T., and Kageyama, M., 1980, Purification and properties of a binding protein for branched-chain amino acids in Pseudomonas aeruginosa, J. Bacteriol. 141: 1055–1063.

    PubMed  CAS  Google Scholar 

  • Hoshino, T., and Kageyama, M., 1982, Mutational separation of transport systems for branched-chain amino acids in Pseudomonas aeruginosa, J. Bacteriol. 151: 620–628.

    PubMed  CAS  Google Scholar 

  • Hoshino, T., and Nishio, K., 1982, Isolation and characterization of a Pseudomonas aeruginosaPAO mutant defective in the strucutral gene for the LIVAT-binding protein, J. Bacteriol. 151: 729–736.

    PubMed  CAS  Google Scholar 

  • Hunt, A. G., and Hong, J.-S., 1981a, The reconstitution of binding protein-dependent active transport of glutamine in isolated membrane vesicles from Escherichia col, J. Biol. Chem. 256: 11988–11991.

    CAS  Google Scholar 

  • Hunt, A. G., and Hong, J.-S., 198lb, The energetics of osmotic shock-sensitive active transport in Escherichia colt, in: Membranes and Transport, Vol. 2 (A. Martonosi, ed.), Plenum Press, New York, pp. 9–13.

    Google Scholar 

  • Hunt, A. G., and Hong, J.-S., 1983a, Properties and characterization of binding protein dependent transport of glutamine in isolated membrane vesicles of Escherichia coli, Biochemistry 22: 844–850.

    CAS  Google Scholar 

  • Hunt, A. G., and Hong, J.-S., 1983b, Involvement of histidine and tryptophan residues of glutamine binding protein with membrane-bound components of the glutamine transport system of Escherichia coil, Biochemistry 22: 851–854.

    CAS  Google Scholar 

  • Iaccarino, M., Guardiola, J., and DeFelice, M., 1978, On the permeability of biological membranes, J. Membr. Sci. 3: 287–302.

    CAS  Google Scholar 

  • Iaccarino, M., Guardiola, J., and DeFelice, M., 1980, Genetics of amino acid transport, in: Microorganisms and Nitrogen Sources( J. W. Payne, ed.), J. Wiley and Sons, New York, pp. 125–151.

    Google Scholar 

  • Isihara, H., and Hogg, R. W., 1980, Amino acid sequence of the sulfate-binding protein from Salmonella ryphimuriumLT2, J. Biol. Chem. 255: 4614–4618.

    PubMed  CAS  Google Scholar 

  • Josefsson, L.-G., and Randall, L. L., 1981, Processing in vivoof precursor maltose-binding protein in Escherichia colioccurs post-translationally as well as cotranslationally, J. Biol. Chem. 256: 2504–2507.

    PubMed  CAS  Google Scholar 

  • Kaback, H. R., 1972, Transport mechanisms in isolated bacterial cytoplasmic membrane vesicles, in: Membrane Research, 1stICN-UCLA Symp. Mol. Biol. ( C. F. Fox, ed.), Academic Press, New York, pp. 473–501.

    Google Scholar 

  • Kaback, H. R., 1974, Transport studies in bacterial membrane vesicles, Science 186: 882–892.

    PubMed  CAS  Google Scholar 

  • Kaback, H. R., 1976, Molecular biology and energetics of membrane transport, J. Cell. Physiol. 89: 575–594.

    PubMed  CAS  Google Scholar 

  • Kaback, H. R., and Deuel, F., 1969, Proline uptake by disrupted membrane preparations from Escherichia coil, Arch. Biochem. Biophys. 132: 118–129.

    PubMed  CAS  Google Scholar 

  • Kaback, H. R., and Kostellow, A. B., 1968, Glycine uptake in Escherichia coli, J. Biol. Chem. 243: 1384–1389.

    PubMed  CAS  Google Scholar 

  • Kaback, H. R., and Milner, L. S., 1970, Relationship of a membrane bound D-(-)-lactic dehydrogenase to amino acid transport in isolated bacterial membrane preparations, Proc. Natl. Acad. Sci. USA 66: 1008–1012.

    PubMed  CAS  Google Scholar 

  • Kaback, H. R., and Stadtman, E. R., 1966, Proline uptake by an isolated cytoplasmic membrane preparation of Escherichia coli, Proc. Natl. Acad. Sci. USA 55: 920–927.

    PubMed  CAS  Google Scholar 

  • Kadner, R. J., 1974, Transport systems for L-methionine in Escherichia coli, J. Bacteriol. 117: 232–241.

    PubMed  CAS  Google Scholar 

  • Kadner, R. J., 1977, Transport and utilization of D-methionine and other methionine sources in Escherichia coli, J. Bacterial. 129: 207–216.

    CAS  Google Scholar 

  • Kadner, R. J., and Watson, W. J., 1974, Methionine transport in Escherichia coli: Physiological and genetic evidence for two uptake systems, J. Bacterial. 119: 401–409.

    CAS  Google Scholar 

  • Kadner, R. J., and Winkler, H. H., 1975, Energy coupling for methionine transport in Escherichia coli, J. Bacterial. 123: 985–991.

    CAS  Google Scholar 

  • Kahane, S., Marcus, M., Barash, H., and Halpern, Y. S., 1975, Sodium-dependent glutamate transport in membrane vesicles of Escherichia coliK-12, FEBS Lett. 560: 235–239.

    Google Scholar 

  • Kay, W. W., 1971, Two aspartate transport systems in Escherichia coli, J. Biol. Chem. 246: 7373–7382.

    PubMed  CAS  Google Scholar 

  • Kay, W. W., and Gronlund, A. F., 1969, Amino acid transport on Pseudomonas aeruginosa, J. Bacteriol. 97: 273–281.

    PubMed  CAS  Google Scholar 

  • Kiritani, K., 1974, Mutants of Salmonella typhimuriumdefective in transport of branched chain amino acids, J. Bacteriol. 120: 1093–1101.

    PubMed  CAS  Google Scholar 

  • Klein, W. L., and Boyer, P. D., 1972, Energization of active transport by Escherichia coli, J. Biol. Chem. 247: 7257–7265.

    PubMed  CAS  Google Scholar 

  • Klein, W. L., Dahms, A. S., and Boyer, P. D., 1970, The nature of the coupling of oxidative energy to amino acid transport, Abstract No. 540, Fed. Proc. Fed. Am. Soc. Exp. Biol. 29: 341.

    Google Scholar 

  • Konings, W. N., Barnes, E. M., and Kaback, H. R., 1971, Mechanism of active transport in isolated membrane vesicles. III. The coupling of reduced phenazine methosulfate to the concentrative uptake of 3-galactosides and amino acids, J. Biol. Chem. 246: 5857–5861.

    PubMed  CAS  Google Scholar 

  • Kreischman, G. P., Robertson, D. E., and Ho, C., 1973, PMR studies of the substrate induced conformational change of the glutamine binding protein from E. coli, Biochem. Biophys. Res. Commun. 53: 18–23.

    Google Scholar 

  • Kusaka, I., Hayakawa, K., Kanai, K., and Fukui, S., 1976, Isolation and characterization of hydrophobic proteins (H proteins) in the membrane fraction of Bacillus subtilus. Involvement in membrane biosynthesis and the formation of biochemically active membrane vesicles by combining H proteins with lipids, Eur. J. Biochem. 71: 451–458.

    PubMed  CAS  Google Scholar 

  • Kustu, S. G., and Ames, G. F.-L., 1973, The hisPprotein, a known histidine transport component in Salmonella typhimurium, is also an arginine transport component, J. Bacteriol. 166: 107–113.

    Google Scholar 

  • Kustu, S. G., and Ames, G. F.-L., 1974, The histidine-binding protein J, a histidine transport component, has two different functional sites, J. Biol. Chem. 249: 6976–6983.

    PubMed  CAS  Google Scholar 

  • Kustu, S. G., McFarland, N. C., Hui, S. P., Esmon, B., and Ames, G. F.-L, 1979, Nitrogen control in Salmonella typhimurium: Co-regulation of synthesis of glutamine synthetase and amino acid transport systems, J. Bacteriol. 138: 218–234.

    PubMed  CAS  Google Scholar 

  • Kuzaya, H., Bromwell, K., and Guroff, G., 1971, The phenylalanine-binding protein of Comanonas sp. (ATCC 11299a), J. Biol. Chem. 246: 6371–6380.

    Google Scholar 

  • Landick, R., 1984, Regulation of LIV-I transport system gene expression, in: Microbiology 1984( D. Schlessinger, ed.), American Society for Microbiology, Washington, D.C., in apress.

    Google Scholar 

  • Landick, R. C., and Oxender, D. L., 1981, Bacterial periplasmic binding proteins, in: Membranes and Transport, Vol. 2 ( A. Martonosi, ed.), Plenum Press, New York, pp. 81–91.

    Google Scholar 

  • Landick, R., Anderson, J. J., Mayo, M. M., Gunsalus, R. P., Mavromara, P., Daniels, C. J., and Oxender, D. L., 1980, Regulation of high affinity leucine transport in Escherichia coli, J. Supramol. Struct. 14: 527–537.

    PubMed  CAS  Google Scholar 

  • Landick, R. C., Daniels, C. J., and Oxender, D. L., 1983, Assays for the role of membrane potential in the secretion of proteins in bacteria, in: Methods in Enzymology(B. Fleischer and S. Fleischer, eds.), 97: 146–153.

    Google Scholar 

  • Landick, R., Duncan, J. R., Copeland, B., Nazos, P., and Oxender, D. L., 1984, Secretion and degradation of mutant leucine-specific binding protein molecules containing C-terminal deletions, J. Cellular Biochem., in press.

    Google Scholar 

  • Lee, M., Robbins, J. C., and Oxender, D. L., 1975, Transport properties of merodiploids covering the dagAlocus in Escherichia coliK-12, J. Bacteriol. 122: 1001–1005.

    PubMed  CAS  Google Scholar 

  • Leive, L., and Davis, B. D., 1965a, The transport of diaminopimelate and cystine in Escherichia coli, J. Biol. Chem. 240: 4263–4369.

    Google Scholar 

  • Leive, L., and Davis, B. D., 1965b, Evidence for a gradient of exogenous and endogenous diaminopimelate in Escherichia coli, J. Biol. Chem. 240: 4370–4376.

    CAS  Google Scholar 

  • Lever, J. E., 1972, Purification and properties of a component of histidine transport in Salmonella typhimurium: The histidine-binding protein J, J. Biol. Chem. 247: 4317–4326.

    PubMed  CAS  Google Scholar 

  • Lieberman, M. A., and Hong, J.-S., 1976, Energization of osmotic shock-sensitive transport systems in Escherichia colirequires more than ATP, Arch. Biochem. Biophys. 172: 312–315.

    PubMed  CAS  Google Scholar 

  • Lieberman, M. A., Simon, M., and Hong, J.-S., 1977, Characterization of Escherichia colimutant incapable of maintaining a transmembrane potential, J. Biol. Chem. 252: 4056–4067.

    PubMed  CAS  Google Scholar 

  • Lombardi, F. J., and Kaback, H. R., 1975, Mechanisms of active transport in isolated bacterial membrane vesicles. VIII. The transport of amino acids by membranes prepared from Escherichia coli, J. Biol. Chem. 247: 7844–7857.

    Google Scholar 

  • MacDonald, R. E., Lanyi, J. K., and Greene, R. V., 1977, Sodium-stimulated glutamate uptake in membrane vesicles of Escherichia coli: The role of ion gradients, Proc. Natl. Acad. Sci. USA 74: 3156–3170.

    Google Scholar 

  • Mahoney, W. C., Hogg, R. W., and Hermondson, M. A., 1981, The amino acid sequence of the Dgalactose-binding protein from Escherichia coliB/r, J. Biol. Chem. 256: 4350–4356.

    PubMed  CAS  Google Scholar 

  • Maniatis, T, Ptashne, M., Backman, K., Kleit, D., Flashman, S., Jeffery, A., and Mauer, R., 1975, Recognition sequences of repressor and polymerase in the operators of phage lambda, Cell 5: 109–113.

    PubMed  CAS  Google Scholar 

  • Manuck, B. A., and Ho, C., 1979, High resolution nuclear magnetic resonance studies of histidine-binding proteins J of Salmonella typhimurium. An investigation of substrate and membrane interaction sites, Biochemistry 18: 566–573.

    PubMed  CAS  Google Scholar 

  • Masters, P. S., and Hong, J.-S., 1981a, Reconstitution of binding protein dependent active transport of glutamine in spheroplasts of Escherichia coli, Biochemistry 20: 4900–4904.

    CAS  Google Scholar 

  • Masters, P. S., and Hong, J.-S., 1981b, Genetics of the glutamine transport system of Escherichia coli, J. Bacteriol. 147: 805–819.

    CAS  Google Scholar 

  • McFarland, N., McCarter, L., Artz, S., and Kustu, S., 1981, Nitrogen regulatory locus “glnR”of enteric bacteria is composed of cistrons ntrBand ntrC: Identification of their protein products, Proc. Natl. Acad. Sci. USA 78: 2135–2139.

    PubMed  CAS  Google Scholar 

  • Menzel, R., 1980, The biochemistry and genetics of proline degradation in S. typhimurium, Ph.D. thesis, University of California, Berkeley, California.

    Google Scholar 

  • Menzel, R., and Roth, J., 1980, Identification and mapping of a second proline permease in Salmonella typhimurium, J. Bacteriol. 141: 1064–1070.

    PubMed  CAS  Google Scholar 

  • Miller, D. M., Olson, J. S., and Quiocho, F. A., 1980, The mechanism of sugar binding to the periplasmic receptor for galactose chemotaxis and transport in Escherichia coli, J. Biol. Chem. 255: 2465–2471.

    PubMed  CAS  Google Scholar 

  • Miner, K. M., and Frank, L., 1974, Sodium-stimulated glutamate transport in osmotically shocked cells and membrane vesicles of Escherichia coli, J. Bacteriol. 117: 1093–1098.

    PubMed  CAS  Google Scholar 

  • Mitchell, P., 1970, Membranes of cells and organelles: Morphology, transport, and metabolism, Symp. Soc. Gen. Microbiol. 29: 121–166.

    Google Scholar 

  • Morikawa, A., Suzuki, H., and Anraku, Y., 1974, Transport of sugars and amino acids in bacteria. VIII. Properties and regulation of the active transport reaction of proline in Escherichia coli, J. Biol. Chem. (Tokyo) 75: 229–241.

    CAS  Google Scholar 

  • Motojima, K., Yamamoto, I., and Anraku, Y., 1978, Proline transport carrier defective mutants of Escherichia coliK12: Properties and mapping, J. Bacteriol. 136: 5–9.

    PubMed  CAS  Google Scholar 

  • Nakane, P. K., Nichoalds, G. E., and Oxender, D. L., 1968, Cellular localization of leucine-binding protein from Escherichia coli, Science 161: 182–183.

    PubMed  CAS  Google Scholar 

  • Neu, H. C., and Heppel, L. A., 1965, The release of enzymes from Escherichia coliby osmotic shock and during the formation of spheroplasts, J. Biol. Chem. 240: 3685–3692.

    PubMed  CAS  Google Scholar 

  • Nichols, W. W., and Hamilton, W. A., 1976, The transport of D-lactate by membrane vesicles from Poracoccus denitriftcans, FEBS Lett. 65: 107–110.

    PubMed  CAS  Google Scholar 

  • Noel, D., Nikaido, K., and Ames, G. F.-L., 1979, A single amino acid substitution in a histidine-transport protein drastically alters its mobility in sodium dodecyl sulfate—polyacrylamide gel electrophoresis, Biochemistry 18: 4159–4165.

    PubMed  CAS  Google Scholar 

  • Ogilvie-Villa, S., DeBusk, R. M., and DeBusk, A. G., 1981, Characterization of 2-aminoisobutyric acid transport in Neurospora crassa: A general amino acid permease-specific substrate, J. Bacteriol. 147: 944–948.

    PubMed  CAS  Google Scholar 

  • Oshimaa, R. B., Willis, R. C., Furlong, C. E., and Schnieder, J. A., 1974, Binding assays for amino acids. The utilization of a cystine-binding protein from Escherichia colifor the determination of acid-soluble cystine in small physiological samples, J. Biol. Chem. 249: 6033–6039.

    Google Scholar 

  • Ovchinnikov, Y. A., Aidanova, N. A., Grinkevich, V. A., Arzamazova, N. M., and Movoz, I. N., 1977, The primary structure of a Leu, Ile, and Val (LIV)-binding protein from Escherichia cols, FEBS Lett. 78: 313–316.

    PubMed  CAS  Google Scholar 

  • Oxender, D. L., 1972, Membrane transport, Annu. Rev. Biochem. 41: 777–814.

    PubMed  CAS  Google Scholar 

  • Oxender, D. L., 1974, Membrane transport proteins, in: Biomembranes, Vol. 5 ( L. A. Manson, ed.), Plenum Press, New York, pp. 25–79.

    Google Scholar 

  • Oxender, D. L., 1975, Genetic approaches to the study of transport, in: Biological Transport, Chapter VI (H. N. Christensen, ed.), Benjamin Press, New York, pp. 214–231.

    Google Scholar 

  • Oxender, D. L., and Christensen, H. N., 1963, Evidence for two types of mediation of neutral amino acid transport in Ehrlich cells, J. Biol. Chem. 238: 3686–3699.

    PubMed  CAS  Google Scholar 

  • Oxender, D. L., and Quay, S. C., 1976a, Regulation of leucine transport and binding proteins in Escherichia coli, J. Cell. Physiol. 89: 517–521.

    CAS  Google Scholar 

  • Oxender, D. L., and Quay, S. C., 1976b, Isolation and characterization of membrane binding proteins, in: Methods in Membrane Biology, Vol. 6, Chapter IV ( E. D. Korn, ed.), Plenum Press, New York, pp. 183–242.

    Google Scholar 

  • Oxender, D. L., and Quay, S. C., 1976c, Binding proteins and membrane transport, Ann. N. Y. Acad. Sci. 264: 358–374.

    Google Scholar 

  • Oxender, D. L., Anderson, J. J., Mayo, M. M., and Quay, S. C., 1977, Leucine binding protein and regulation of transport in Escherichia coli, J. Supramol. Struct. 6: 419–431.

    PubMed  CAS  Google Scholar 

  • Oxender, D. L., Anderson, J. J., Daniels, C. J., Landick, R., Gunsalus, R. P., Zurawski, G., Selker, E., and Yanofsky, C., 1980a, Structural and functional analysis of cloned DNA containing genes responsible for branched-chain amino acid transport in Escherichia coil, Proc. Natl. Acad. Sci. USA 77: 1412–1416.

    CAS  Google Scholar 

  • Oxender, D. L., Anderson, J. J., Daniels, C. J., Landick, R., Gunsalus, R. P., Zurawski, G., and Yanofsky, C., 1980b, Amino-terminal sequence and processing of the precursor of the luecine-specific binding protein, and evidence for conformational differences between the precursor and mature form, Proc. Natl. Acad. Sci. USA 77: 2005–2009.

    CAS  Google Scholar 

  • Pall, M. L., 1969, Amino acid transport in Neurospora crassa. I. Properties of two amino acid transport systems, Biochem. Biophys. Acta 173: 113–129.

    PubMed  CAS  Google Scholar 

  • Patel, L., Garcia, M. L., and Kaback, H. R., 1982, Direct measurement of lactose/proton symport in Escherichia colimembrane vesicles: Further evidence for the involvement of histidine residue(s), Biochemistry 21: 5805–5810.

    PubMed  CAS  Google Scholar 

  • Penrose, W. R., Zand, R., and Oxender, D. L., 1970, Reversible conformational changes in a leucine binding protein from Escherichia colt, J. Biol. Chem. 245: 1432–1437.

    PubMed  CAS  Google Scholar 

  • Piperno, J. R., and Oxender, D. L., 1966, Amino acid-binding protein released from Escherichia coltby osmotic shock, J. Biol. Chem. 241: 5732–5743.

    PubMed  CAS  Google Scholar 

  • Pipemo, J. R., and Oxender, D. L., 1968, Amino acid transport systems in Escherichia coltK12, J. Biol. Chem. 243: 5914–5920.

    Google Scholar 

  • Plate, C. A., 1976, Mutant of Escherichia colidefective in response to colicin K and active transport, J. Bacteriol. 125: 467–474.

    PubMed  CAS  Google Scholar 

  • Plate, C. A., 1979, Requirement for membrane potential in active transport of glutamine by Escherichia colt, J. Bacteriol. 137: 221–225.

    PubMed  CAS  Google Scholar 

  • Plate, C. A., Suit, J. L., Jetten, A. M., and Luria, S. E., 1974, Effect of colicin K on a mutant of Escherichia coltdeficient in Ca, Mgactivated adenosine triphosphatase, J. Biol. Chem. 249: 6138–6143.

    PubMed  CAS  Google Scholar 

  • Postma, P. W., and Roseman, S., 1976, The bacterial phosphoenolpyruvate:sugar phosphotransferase system, Biochem. Biophys. Acta 457: 213–257.

    CAS  Google Scholar 

  • Quay, S. C., and Oxender, D. L., 1976, Regulation of branched-chain amino acid binding proteins in Escherichia coli, J. Bacteriol. 127: 1225–1238.

    PubMed  CAS  Google Scholar 

  • Quay, S. C., and Oxender, D. L., 1977, Regulation of amino acid transport in Escherichia coltby transcription termination factor rho, J. Bacteriol. 139: 1024–1029.

    Google Scholar 

  • Quay, S. C., and Oxender, D. L., 1979, The relAlocus specifies a positive effector for branched-chain amino acid transport regulation, J. Bacteriol. 137: 1059–1062.

    PubMed  CAS  Google Scholar 

  • Quay, S. C., and Oxender, D. L., 1980a, Regulation of membrane transport, in: Biological Regulation and Development, Vol. 2 ( R. Goldberger, ed.), Plenum Press, New York, pp. 413–436.

    Google Scholar 

  • Quay, S. C., and Oxender, D. L., 1980b, Role of tRNAI`“ in branched-chain amino acid transport, in: tRNA: Biological Aspects( D. Söll, J. Abelson, and P. R. Schimmel, eds.), Cold Spring Harbor Press, Cold Spring Harbor, New York, pp. 481–491.

    Google Scholar 

  • Quay, S. C., Kline, E. L., and Oxender, D. L., 1975a, Role of leucyl-tRNA synthetase in regulation of branched-chain amino acid transport, Proc. Natl. Acad. Sci. USA 72: 3921–3924.

    CAS  Google Scholar 

  • Quay, S. C., Oxender, D. L., Tsuyumu, S., and Umbarger, H. E., 1975b, Separate regulation of transport and biosynthesis of leucine, isoleucine, and valine in bacteria, J. Bacteriol. 122: 994–1000.

    CAS  Google Scholar 

  • Quay, S. C., Dick, T. E., and Oxender, D. L., 1977, Role of transport systems in amino acid metabolism: Leucine toxicity and the branched-chain amino acid transport systems, J. Bacteriol. 129: 1257–1265.

    PubMed  CAS  Google Scholar 

  • Quay, S. C., Lawther, R. P., Hatfield, G. W., and Oxender, D. L., 1978, Branched-chain amino acid transport regulation in mutants blocked in tRNA maturation and transcription termination, J. Bacteriol. 134: 683–686.

    PubMed  CAS  Google Scholar 

  • Quiocho, F. A., Gilliland, G. L., and Phillips, G. N., 1977, The 2.8-A resolution structure of the Larabinose-binding protein from Escherichia coli, J. Biol. Chem. 252: 5142–5149.

    PubMed  CAS  Google Scholar 

  • Quiocho, F. A., Meador, W. E., and Pflugrath, J. W., 1979, Preliminary crystallographic data on receptors for transport and chemotaxis of Escherichia colt: D-galactose and maltose binding proteins, J. Mol. Biol. 133: 181–184.

    PubMed  CAS  Google Scholar 

  • Rahmanian, M., and Oxender, D. L., 1972, Derepressed leucine transport activity in Escherichia coli, J. Supramol. Struct. 1: 55–59.

    PubMed  CAS  Google Scholar 

  • Rahmanian, M., Claus, D. R., and Oxender, D. L., 1973, Multiplicity of leucine transport systems in Escherichia coltK12, J. Bacteriol. 116: 1258–1266.

    PubMed  CAS  Google Scholar 

  • Ramos, S., and Kaback, H. R., 1977a, The electrochemical proton gradient in Escherichia colimembrane vesicles, Biochemistry 16: 848–853.

    CAS  Google Scholar 

  • Ramos, S., and Kaback, H. R., 1977b, The relationship between the electrochemical proton gradient and active transport in Escherichia colimembrane vesicles, Biochemistry 16: 855–859.

    Google Scholar 

  • Rao, E. Y. T., Rao, T. K., and DeBusk, A. G., 1975, Isolation and characterization of a mutant of Neurospora crassadeficient in general amino acid permease activity, Biochem. Biophys. Acta 413: 45–51.

    PubMed  CAS  Google Scholar 

  • Ratzkin, B., Grabnar, M., and Roth, J., 1978, Regulation of a major proline permease gene of Salmonella typhimurium, J. Bacteriol. 133: 737–739.

    PubMed  CAS  Google Scholar 

  • Rhoads, D. B., and Epstein, W., 1977, Energy coupling to net K’ transport in Escherichia coliK12, J. Biol. Chem. 252: 1394–1401.

    PubMed  CAS  Google Scholar 

  • Robb, F. T., and Furlong, C. E., 1980, Reconstitution of binding protein dependent ribose transport in spheroplasts derived from a binding protein negative Escherichia coliK12 mutant and from Salmonella typhimurium, J. Supramol. Struct. 13: 183–190.

    PubMed  CAS  Google Scholar 

  • Robbins, J. C., and Oxender, D. L., 1973, Transport systems for alanine, serine, and glycine, J. Bacteriol. 116: 12–18.

    PubMed  CAS  Google Scholar 

  • Robertson, D. E., Kroon, P. A., and Ho, C., 1977, Nuclear magnetic resonance and fluorescence studies of substrate induced conformational changes of histidine-binding protein J of Salmonella typhimurium, Biochemistry 16: 1443–1451.

    PubMed  CAS  Google Scholar 

  • Ron, E. Z., Kohler, R. E., and Davis, B. D., 1966, Polysomes extracted from Escherichia coliby freezethaw-lysozyme lysis, Science 153: 1119–1120.

    PubMed  CAS  Google Scholar 

  • Rosen, B. P., 1971, Basic amino acid transport in Escherichia coli, J. Biol. Chem. 246: 3653–3662.

    PubMed  CAS  Google Scholar 

  • Rosen, B. P., 1973a, Basic amino acid transport in Escherichia coli: Properties of canavanine-resistant mutants, J. Bacteriol. 116: 627–635.

    CAS  Google Scholar 

  • Rosen, B. P., 1973b, Basic amino acid transport in Escherichia coli. II. Purification and properties of an arginine specific binding protein, J. Biol. Chem. 248: 1211–1218.

    CAS  Google Scholar 

  • Rosen, B. P., and Vasington, F. D., 1971, Purification and characterization of a histidine-binding protein from Salmonella typhimuriumLT-2 and its relationship to the histidine permease system, J. Biol. Chem. 246: 5351–5356.

    PubMed  CAS  Google Scholar 

  • Rowland, I., and Tristam, H., 1974, Specificity of the Escherichia coliproline transport system, J. Bacteriol. 123: 871–877.

    Google Scholar 

  • Saper, M. A. and Quiocho, F. A., 1983, Leucine, isoleucine, valine-binding protein from Escherichia coli: Structure at 3.0 A resolution and location of the binding site, J. Biol. Chem. 258: 11057–11062.

    PubMed  CAS  Google Scholar 

  • Schellenberg, G. D., 1978, The multiplicity of glutamate and aspartate transport systems in Escherichia coli, Ph.D. dissertation, University of California, Riverside, California.

    Google Scholar 

  • Schellenberg, G. D., and Furlong, C. E., 1977, Resolution of the multiplicity of the glutamate and aspartate transport systems of Escherichia coil, J. Biol. Chem. 352: 9055–9064.

    Google Scholar 

  • Schuldiner, S., Kung, H., Weil, R., and Kaback, H. R., 1975, Differentiation between binding and transport of dansylgalactosides in Escherichia coli, J. Biol. Chem. 250: 3679–3682.

    PubMed  CAS  Google Scholar 

  • Seaston, A., Inkson, C., and Eddy, A. A., 1973, The absorption of protons with specific amino acids and carbohydrates by yeast, Biochem. J. 154: 1031–1043.

    Google Scholar 

  • Seaston, A., Carr, G., and Eddy, A. A., 1976, The concentration of glycine by preparations of the yeast Saccharomyces carlsbergensisdepleted of adenosine triphosphate: Effects of proton gradients and uncoupling agents, Biochem. J. 169: 210–218.

    Google Scholar 

  • Shaltiel, S., Ames, G. F.-L., and Noel, K. D., 1973, Hydrophobic chromatography in the purification of the histidine-binding protein J from Salmonella typhimurium Arch. Biochem. Biophys. 159: 174–179.

    CAS  Google Scholar 

  • Shuman, H. A., 1982, Active transport of maltose in Escherichia coliK12: Role of the periplasmic maltose-binding protein and evidence for a substrate recognition site in the cytoplasmic membrane, J. Biol. Chem. 257: 5455–5461.

    PubMed  CAS  Google Scholar 

  • Shuman, H. A., and Silhavy, T. J., 1981, Identification of the malKgene product: A peripheral membrane component of the Escherichia colimaltose transport system, J. Biol. Chem. 256: 560–562.

    PubMed  CAS  Google Scholar 

  • Shuman, H. A., Silhavy, T. J., and Beckwith, J. R., 1980, Labeling of proteins with 3-galactosidase by gene fusion: Identification of a cytoplasmic membrane component of the Escherichia colimaltose transport system, J. Biol. Chem. 255: 168–174.

    PubMed  CAS  Google Scholar 

  • Simoni, R. D., and Postma, P. W., 1975, The energetics of amino acid transport, Annu. Rev. Biochem. 44: 523–544.

    PubMed  CAS  Google Scholar 

  • Slayman, C. W., 1973, The genetic control of membrane transport, Curr. Top. Membr. Trans. 4: 1–175.

    CAS  Google Scholar 

  • Smith, W. P., Tai, P.-C., Thompson, R., and Davis, B. D. 1977, Extracellular labeling of nascent polypeptides traversing the membrane of Escherichia coli, Proc. Natl. Acad. Sci. USA 74: 2830–2834.

    PubMed  CAS  Google Scholar 

  • Smith, W. P., Tai, P.-C., and Davis, B. D., 1978, Nascent peptide as sole attachment of polysomes to membranes in bacteria, Proc Natl. Acad. Sci. USA 75: 814–817.

    PubMed  CAS  Google Scholar 

  • Stern, M. F., Ames, G. F.-L., Smith, N. H., Robinson, C. E., and Higgins, C. F., 1984, Repetitive extragenic palindromic (REP) sequences: a major component of the bacterial genome, Cell (in press).

    Google Scholar 

  • Stevenson, J., 1966, The specific requirement for sodium chloride for the active uptake of L-glutamate by Halobacterium salinarium, Biochem. J. 99: 257–260.

    PubMed  CAS  Google Scholar 

  • Sveedhara-Swamy, K. H., and Goldberg, A. L., 1982, Subcellular distribution of various proteases in Escherichia coli, J. Bacteriol. 149: 1027–1033.

    Google Scholar 

  • Templeton, B. A., and Savageau, M. A., 1974a, Transport of biosynthetic intermediates: Regulation of homoserine and threonine uptake in Escherichia coli, J. Bacteriol. 120: 114–120.

    CAS  Google Scholar 

  • Templeton, B. A., and Savageau, M. A., 1974b, Transport of biosynthetic intermediates: Homoserine and threonine uptake in Escherichia coil, J. Bacteriol. 117: 1002–1009.

    CAS  Google Scholar 

  • Tinoco, I., Borer, P. N., Dengler, B., Levine, M. D., Uhlenbeck, O. C., Crothers, D. M., and Gralla, J., 1973, Improved estimation of secondary structure in ribonucleic acids, Nature 246: 40–41.

    CAS  Google Scholar 

  • Tsuchiya, T., Hasan, S. M., and Raven, J., 1977, Glutamate transport driven by an electrochemical gradient of sodium ions in Escherichia coli, J. Bacteriol. 131: 848–853.

    PubMed  CAS  Google Scholar 

  • Wargel, R. J. C., Shadur, C. A., and Neuhaus, F. C., 1970, Mechanism of D-cycloserine action: Transport

    Google Scholar 

  • systems for D-alanine, D-cycloserine, alanine, and glycine, J. Biol. Chem. 103:778–788.

    Google Scholar 

  • Wargel, R. J. C., Shadur, C. A., and Neuhaus, F. C., 1971, Mechanism of D-cycloserine action: Transport mutants for D-alanine, D-cycloserine, alanine, and glycine, J. Bacteriol. 105: 1028–1035.

    PubMed  CAS  Google Scholar 

  • Weiner, J. H., and Heppel, L. A., 1971, A binding protein for glutamine and its relation to active transport in Escherichia coil, J. Biol. Chem. 246: 6933–6941.

    Google Scholar 

  • Weiner, J. H., Furlong, C. E., and Heppel, L. A., 1971, A binding protein for L-glutamine and its relation to active transport in Escherichia coli, Arch. Biochem. Biophys. 142: 715–717.

    PubMed  CAS  Google Scholar 

  • Whipp, M. J., Halsall, D. M., and Pittard, A. J., 1980, Isolation and characterization of an Escherichia coliK12 mutant defective in tyrosine-and phenylalanine-specific transport systems, J. Bacteriol. 143: 1–7.

    PubMed  CAS  Google Scholar 

  • Willis, R. C., and Furlong, C. E., 1975, Purification and properties of a periplasmic glutamate-aspartate binding protein from Escherichia coliK-12 strain W3092, J. Biol. Chem. 250: 2574–2580.

    PubMed  CAS  Google Scholar 

  • Willis, R. C., and Woolfolk, C. A., 1975, L-Asparagine uptake in Escherichia coli, J. Bacteriol. 123: 937–945.

    PubMed  CAS  Google Scholar 

  • Willis, R. C., Morris, R. G., Cirakoglu, C., Schellenberg, G. D., Gerber, N. H., and Furlong, C. E., 1974, Preparations of the periplasmic binding proteins from Salmonella typhimuriumand Escherichia coli, Arch. Biochem. Biophys. 161: 64–75.

    CAS  Google Scholar 

  • Willis, R. C., Iwata, K. K., and Furlong, C. E., 1975, Regulation of glutamine transport in Escherichia coli, J. Bacteriol. 122: 1032–1037.

    PubMed  CAS  Google Scholar 

  • Wilson, D. B., 1978, Cellular transport mechanisms, Annu. Rev. Biochem. 47: 933–965.

    PubMed  CAS  Google Scholar 

  • Wilson, O. H., and Holden, J. T., 1969a, Arginine transport and metabolism in osmotically shocked cells of Escherichia coli W, J. Biol. Chem. 244: 2737–2742.

    CAS  Google Scholar 

  • Wilson, O. H., and Holden, J. T., 1969b, Stimulation of arginine transport in osmotically shocked Esch- erichia coliW cells by purified arginine-binding protein fractions, J. Biol. Chem. 244: 2743–2749.

    CAS  Google Scholar 

  • Wong, P. T. S., Thompson, J., and McCleod, R. A., 1980, Nutrition and metabolism of marine bacteria. XVII. Ion-dependent retention of a-aminoisobutyric acid and its relation to Nat-dependent transport in a marine pseudomonad, J. Biol. Chem. 244: 1016–1025.

    Google Scholar 

  • Wood, J. M., 1975, Leucine transport in Escherichia coli: The resolution of multiple transport systems and their coupling to metabolic energy, J. Biol. Chem. 250: 4477–4485.

    PubMed  CAS  Google Scholar 

  • Wood, J. M., 1981, Genetics of L-proline utilization in Escherichia coli, J. Bacteriol. 146: 895–901.

    CAS  Google Scholar 

  • Wood, J. M., Zwadorny, D., Lohmeier, E., and Weiner, J. H., 1979, Characterization of an inducible porter for L-proline catabolism by Escherichia coli, Can. J. Biochem. 57: 1328–1330.

    CAS  Google Scholar 

  • Yamato, I., and Anraku, Y., 1977, Transport of sugars and amino acids in bacteria. XVIII. Properties of an isoleucine transport carrier in the cytoplasmic membrane vesicles of Escherichia coli, J. Biol. Chem (Tokyo) 81: 1517–1523.

    CAS  Google Scholar 

  • Yamato, I., and Anraku, Y., 1980, Genetic and biochemical studies of transport systems for branched-chain amino acids in Escherichia coil: Isolation and properties of mutants defective in leucine-repressible activities, J. Bacteriol. 144: 36–44.

    PubMed  CAS  Google Scholar 

  • Yanofsky, C., 1981, Attenuation in the control of expression of bacterial operons, Nature 289: 751–758.

    PubMed  CAS  Google Scholar 

  • Young, I. G., Rogers, B. L., Campbell, H. D., Jawornowski, A., and Shaw, D. C., 1981, Nucleotide sequence coding for the respiratory NADH dehydrogenase of Escherichia coli: UUG initiation codon, Eur. J. Biochem. 116: 165–170.

    PubMed  CAS  Google Scholar 

  • Zwizinski, C., and Wickner, W., 1980, Purification and characterization of a leader (signal) peptidase from Escherichia coil, J. Biol. Chem. 255: 7973–7977.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Landick, R., Oxender, D.L., Ferro-Luzzi Ames, G. (1985). Bacterial Amino Acid Transport Systems. In: Martonosi, A.N. (eds) The Enzymes of Biological Membranes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4601-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4601-2_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4603-6

  • Online ISBN: 978-1-4684-4601-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics