Skip to main content

Hexose Transport and Its Regulation in Mammalian Cells

  • Chapter

Abstract

The uptake of solutes across the cell-surface membrane can occur by either an active or passive transport mechanism. Active transport mechanisms are characterized by the uptake of solutes against their concentration gradient at the expense of metabolic energy. Active transport of hexoses occurs in two major tissues in mammals, kidney and intestine, and will not be dealt with in this review. Passive transport can be subdivided into the two categories of simple diffusion or facilitative diffusion. In both cases, the movement of solutes across the cell membrane is driven solely by the concentration gradient between the intracellular and extracellular environment without any metabolic energy being required. Net uptake ceases when the concentration of solutes between the inside and outside of the cell has reached equilibrium. Facilitative diffusion differs from simple diffusion in that the former process is mediated by membrane-bound proteins which exhibit a high degree of specificity and whose activity is competitively inhibited with appropriate analogues. The difference in transport rate between simple and facilitative diffusion is dramatically exemplified by the permeability of d-glucose across synthetic lipid bilayers with a permeability coefficient of 10−9–10−10 cm/sec (Lidgard and Jones, 1975; Jung, 1971a), whereas for the intact erythrocyte, the permeability coefficient is approximately 10−4 cm/sec (Jung, 1971b).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albert, S. G., 1982, The effect of insulin on glucose transport in rabbit erythrocytes and reticulocytes, Life Sci. 31: 265–271.

    PubMed  CAS  Google Scholar 

  • Amatruda, J. M., and Finch, E. D., 1979, Modulation of hexose uptake and insulin action by cell membrane fluidity, J. Biol. Chem. 254: 2619–2625.

    PubMed  CAS  Google Scholar 

  • Angel, A., and Farkas, J., 1970, Structural and chemical compartments in adipose cells, in: Hormone and Metabolic Research, Supplement 2. Adipose Tissue, Regulation and Metabolic Functions ( B. Jeanrenaud and D. Hepp, eds.), Academic Press, New York, pp. 152–161.

    Google Scholar 

  • Baldwin, S. A., and Baldwin, J. M., 1981, The stoichiometry of cytochalasin B binding to the human erythrocyte glucose transporter, Fed. Proc. 40:1983.

    Google Scholar 

  • Baldwin, S. A., and Lienhard, G. E., 1980, Immunological identification of the human erythrocyte monosaccharide transporter, Biochem. Biophys. Res. Commun. 94: 1401–1408.

    PubMed  CAS  Google Scholar 

  • Baldwin, S. A., and Lienhard, G. E., 1981, Glucose transport across plasma membranes: Facilitated diffusion systems, TIBS 6: 208–211.

    CAS  Google Scholar 

  • Baldwin, S. A., Baldwin, J. M., Gorga, F. R., and Lienhard, G. E., 1979, Purification of the cytochalasin B binding component of the human erythrocyte monosaccharide transport system, Biochim. Biophys. Acta 552: 183–188.

    PubMed  CAS  Google Scholar 

  • Baldwin, S. A., Baldwin, J. M., and Lienhard, G. E., 1982, Monosaccharide transport of the human erythrocyte: Characterization of an improved preparation, Biochemistry 21: 3836–3849.

    PubMed  CAS  Google Scholar 

  • Barnett, J. E. G., Holmon, G. D., and Munday, K. A., 1973, Structural requirement for binding to the sugar-transport system of the human erythrocyte, Biochem. J. 131: 211–221.

    PubMed  CAS  Google Scholar 

  • Basketter, D. A., and Widdas, W. F., 1977, Competitive inhibition of hexose transfer in human erythrocytes by cytochalasin B, J. Physiol. 265: 39 P.

    Google Scholar 

  • Batt, E. R., Abbott, R. E., and Schachter, D., 1975, Two types of sulfhydryl groups involved in erythrocyte hexose transport, Fed. Proc. 34: 250.

    Google Scholar 

  • Batt, E. R., Abbott, R. E., and Schachter, D., 1976, Impermeant maleimides, J. Biol. Chem. 251:7184–7190. Bihler, I., 1971, Ionic effects in the regulation of sugar transport in muscle, in: The Role of Membranes in Metabolic Regulation ( M. A. Mehlman and R. W. Hanson, eds.), Academic Press, New York, pp. 411–422.

    Google Scholar 

  • Bihler, I. 1974, Mechanisms regulating the membrane transport of sugars in the myocardium, in: Recent Advances in Studies on Cardiac Structure and Metabolism (N. S. Dhalla, ed.), University Park Press, Baltimore, pp. 209–216.

    Google Scholar 

  • Binder, M., and Tamm, C., 1973, The cytochalasins: A new class of biologically active microbial metabolites, Angew. Chem. 12: 370–380.

    CAS  Google Scholar 

  • Blecher, M., 1968, Action of insulin on a glucose transport mechanism in the plasma membrane of the isolated adipose cell. Participation of membrane phospholipids and cyclic adenosine monophosphate in the transport processes, Gumma Symp. Endocrinol. 5: 145–161.

    CAS  Google Scholar 

  • Bloch, R., 1973, Inhibition of glucose transport in the human erythrocyte by cytochalasin B, Biochemistry 12: 4779–4801.

    Google Scholar 

  • Bonne, D., Belhadj, O., and Cohen, P., 1977, Modulation by calcium of the insulin action and of the insulin-like effect of oxytocin on isolated rat adipocytes, Eur. J. Biochem. 75: 101–105.

    PubMed  CAS  Google Scholar 

  • Bonne, D., Belhadj, O., and Cohen, P., 1978, Calcium as modulator of the hormonal-receptors-biological-response coupling system. Eur. J. Biochem. 86: 261–266.

    PubMed  CAS  Google Scholar 

  • Carruthers, A., and Melchior, D. L., 1983, Asymmetric or symmetric cytosolic modulation of human erythrocyte hexose transfer, Biochim. Biophys. Acta 727: 421–434.

    Google Scholar 

  • Carter, J. R., and Martin, D. B., 1969, The effect of sulfhydryl blockade on insulin action and glucose transport in isolated adipose tissue cells, Biochim. Biophys. Acta 177: 521–526.

    PubMed  CAS  Google Scholar 

  • Carter-Su, C., Pillion, D. J., and Czech, M. P., 1980, Reconstituted D-glucose transport from the adipocyte plasma membrane: Chromatographic resolution of transport activity from membrane glycoproteins using immobilized concanavalin A, Biochemistry 19: 2374–2385.

    PubMed  CAS  Google Scholar 

  • Carter-Su, C., Pilch, P. F., and Czech, M. P., 1981, Chromatographic resolution of insulin receptor from insulin-sensitive D-glucose transporter of adipocyte plasma membranes, Biochemistry 20: 216–221.

    PubMed  CAS  Google Scholar 

  • Carter-Su, C., Pessin, J. E., Mora, R., Gitomer, W., and Czech, M. P., 1982, Photoaffinity labeling of the human erythrocyte D-glucose transporter, J. Biol. Chem. 257: 5419–5425.

    PubMed  CAS  Google Scholar 

  • Chandramouli, V., Milligan, M., and Carter, J. R., Jr., 1977, Insulin stimulation of glucose transport in adipose cells. An energy-dependent process, Biochemistry 16: 1151–1158.

    PubMed  CAS  Google Scholar 

  • Christopher, C. W., 1977, Hexose transport regulation in cultured hamster cells, J. Supramol. Struct. 6: 485–494.

    PubMed  CAS  Google Scholar 

  • Christopher, C. W., Kohlbacher, M. S., and Amos, H., 1976a, Derepression and carrier turnover: Evidence for two regulators in animal cells, Biochem. J. 158: 439–450.

    PubMed  CAS  Google Scholar 

  • Christopher, C. W., Colby, W. W., and Ullrey, D., 1976b, Transport of sugars in chick-embryo fibroblasts, J. Cell Physiol. 89: 683–692.

    PubMed  CAS  Google Scholar 

  • Christopher, C. W., Ullrey, D., Colby, W., and Kalckar, H. M., 1976c, Paradoxical effects of cycloheximide and cytochalasin B on hamster cell hexose uptake, Proc. Natl. Acad. Sci. USA 73: 2429–2433.

    PubMed  CAS  Google Scholar 

  • Ciaraldi, T. P., and Olefsky, J. M., 1979, Coupling of insulin receptors to glucose transport: A temperature-dependent time lag in activation of transport, Arch. Biochem. Biophys. 193: 221–231.

    PubMed  CAS  Google Scholar 

  • Ciaraldi, T. P., and Olefsky, J. M., 1980, Relationship between deactivation of insulin-stimulated glucose transport and insulin dissociation in isolated rat adipocytes, J. Biol. Chem. 255: 327–330.

    PubMed  CAS  Google Scholar 

  • Ciaraldi, T. P., and Olefsky, J. M., 1982a, Kinetic relationship between insulin receptor binding and effects on glucose transport in isolated rat adipocytes, Biochemistry 21: 3475–3480.

    PubMed  CAS  Google Scholar 

  • Ciaraldi, T. P., and Olefsky, J. M., 1982b, Comparison of the effects of insulin and H202 on adipocyte glucose transport, J. Cell Physiol. 110: 323–328.

    PubMed  CAS  Google Scholar 

  • Clausen, T., 1977a, Calcium, glucose transport and insulin action, in: Biochemistry of Membrane Transport, FEBS Symposium No. 42 ( G. Semenza and E. Carafoli, eds.), Springer-Verlag, New York.

    Google Scholar 

  • Clausen, T., 1977b, The role of calcium in the action of insulin, in: Membrane Proteins, FEBS 11th Meeting Copenhagen, Vol. 45, Symposium A4.

    Google Scholar 

  • Clausen, T., and Martin, B. R., 1977, The effect of insulin on the washout of (45Calcalcium from adipocytes and soleus muscle of the rat, Biochem. J. 164: 251–255.

    PubMed  CAS  Google Scholar 

  • Clausen, T., Elbrink, J., and Martin, B. R., 1974, Insulin controlling calcium distribution in muscle and fat cells, Acta Endocrinol. 77 (Suppl. 191): 137–143.

    CAS  Google Scholar 

  • Cuatrecasas, P., 1973a, Interaction of wheat germ agglutinin and concanavalin A with isolated fat cells, Biochemistry 12: 1312–1323.

    PubMed  CAS  Google Scholar 

  • Cuatrecasas, P., 1973b, Interaction of concanavalin A and wheat germ agglutinin with the insulin receptor of fat cells and liver, J. Biol. Chem. 248: 3528–3534.

    PubMed  CAS  Google Scholar 

  • Cuatrecasas, P., and Illiano, G., 1971, Membrane sialic acid and the mechanism of insulin action in adipose tissue cells. Effect of digestion with neuraminidase, J. Biol. Chem. 246: 4938–4946.

    PubMed  CAS  Google Scholar 

  • Cuatrecasas, P., and Tell, G. P. E., 1973, Insulin-like activity of concanavalin A and wheat germ agglutinin-direct interactions with insulin receptors, Proc. Natl. Acad. Sci. USA 70: 485–489.

    PubMed  CAS  Google Scholar 

  • Czech, M. P., 1976a, Regulation of the D-glucose transport system in isolated fat cells, Mol. Cell. Biochem. 11: 51–63.

    PubMed  CAS  Google Scholar 

  • Czech, M. P., 1976b, Differential effect of sulthydryl reagents on activation and deactivation of the fat cell hexose transport system, J. Biol. Chem. 251: 1164–1170.

    PubMed  CAS  Google Scholar 

  • Czech, M. P., 1976c, Current status of the thiol redox model for the regulation of hexose transport by insulin, J. Cell Physiol. 89: 661–668.

    PubMed  CAS  Google Scholar 

  • Czech, M. P., 1977, Molecular basis of insulin action, Annu. Rev. Biochem. 46: 359–384.

    PubMed  CAS  Google Scholar 

  • Czech, M. P., 1980, Insulin action and the regulation of hexose transport, Diabetes 29: 399–409.

    PubMed  CAS  Google Scholar 

  • Czech, M. P., 1981, Insulin Action: Second Messengers, Handbook of Diabetes Mellitus; Islet Cell Function/Insulin Action (M. Brownlee, ed.), Garland Press, New York, pp. 117–149.

    Google Scholar 

  • Czech, M. P., and Lynn, W. S., 1973, Stimulation of glucose metabolism by lectins in isolated white fat cells, Biochim. Biophys. Acta 217: 386–397.

    Google Scholar 

  • Czech, M. P., Lynn, D. G., and Lynn, W. S., 1973, Cytochalasin B-sensitive 2-Deoxyglucose transport in adipose cell ghosts, J. Biol. Chem. 248: 3636–3641.

    PubMed  CAS  Google Scholar 

  • Czech, M. P., Lawrence, J. C., Jr., and Lynn, W. S., 1974a, Hexose transport in isolated brown fat cells. A model system for investigating insulin action on membrane transport, J. Biol. Chem. 249: 5421–5427.

    PubMed  CAS  Google Scholar 

  • Czech, M. P., Lawrence, J. C., and Lynn, W. S., 1974b, Evidence for electron transfer reactions involved in the Cu’ -dependent thiol activation of fat cell glucose utilization, J. Biol. Chem. 249: 1001–1006.

    PubMed  CAS  Google Scholar 

  • Czech, M. P., Lawrence, J. C., and Lynn, W. S., 1974c, Activation of hexose transport by concanavalin A in isolated brown fat cells. Effects of cell surface modification with neuraminidase and trypsin on lectin and insulin action, J. Biol. Chem. 249: 7499–7505.

    PubMed  CAS  Google Scholar 

  • Czech, M. P., Lawrence, J. C., and Lynn, W. S., 1974d, Evidence for the involvement of sulfhydryl

    Google Scholar 

  • oxidation in the regulation of cell hexose transport by insulin, Proc. Natl. Acad. Sci. USA 71:4173–4177.

    Google Scholar 

  • Davidson, M. B., and Frank, H. J. L., 1980, Decreased spare hepatic receptors for insulin: Possible importance for insulin action, Diabetes 29 (Suppl. 2): 39A.

    Google Scholar 

  • Dolberg, D. S., Bassham, J. A., and Bissell, M. J., 1975, Selective inhibition of the facilitated mode of sugar uptake by cytochalasin B in cultured chick fibroblasts, Exp. Cell Res. 96: 129–137.

    PubMed  CAS  Google Scholar 

  • Dubyak, G. R., and Kleinzeller, A., 1980, The insulinomimetic effects of vanadate in isolated rat adipocytes, J. Biol. Chem. 255: 5306–5312.

    PubMed  CAS  Google Scholar 

  • Eady, R. P., and Widdas, W. F., 1973, The use of sugars and fluorodinitrobenzene (FDNB) to differentially label red cell membrane components involved in hexose transfers, Quart. J. Exp. Physiol. 58: 59–66.

    PubMed  CAS  Google Scholar 

  • Eisenman, G., Ciani, S. M., and Szabo, G., 1968, Some theoretically expected and experimentally observed properties of lipid bilayer membranes containing neutral molecular carries of ions, Fed. Proc. 27: 1289–1304.

    PubMed  CAS  Google Scholar 

  • Ezaki, O., and Kono, T., 1982, Effects of temperature on basal and insulin-stimulated glucose transport activities in fat cells, J. Biol. Chem. 257: 14306–14310.

    PubMed  CAS  Google Scholar 

  • Fain, J. N., Kovacev, V. P., and Scow, R. O., 1966, Antilipolytic effect of insulin in isolated fat cells of the rat, Endocrinology 78: 773–778.

    PubMed  CAS  Google Scholar 

  • Fairbanks, G., Steck, T. L., and Wallach, D. F. H., 1971, Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane, Biochemistry 10: 2606–2616.

    PubMed  CAS  Google Scholar 

  • Fehlmann, M., and Freychet, P., 1981, Insulin and glucagon stimulation of (Na’ -K ’)-ATPase transport activity in isolated rat hepatocytes, J. Biol. Chem. 256: 7449–7453.

    PubMed  CAS  Google Scholar 

  • Finkelstein, A., and Cass, A., 1968, Permeability and electrical properties of thin lipid membranes, J. Gen. Physiol. 52: 145–173.

    PubMed  CAS  Google Scholar 

  • Flier, J. S., Kahn, C. R., Roth, J., and Bar, R. S., 1975, Antibodies that impair insulin receptor binding in an unusual diabetic syndrome with severe insulin resistance, Science 190: 63–65.

    PubMed  CAS  Google Scholar 

  • Flier, J. S., Kahn, C. R., Jarrett, D. B., and Roth, J., 1976a, The immunology of the insulin receptor, Immunol. Commun. 5: 361–373.

    PubMed  CAS  Google Scholar 

  • Flier, J. S., Kahn, C. R., Jarrett, D. B., and Roth, J., I976b, Characterization of antibodies to the insulin receptor; a cause of insulin-resistant diabetes in man, J. Clin. Invest. 58:1442–1449.

    Google Scholar 

  • Franchi, A., Silvestre, P., and Pouyssegur, 1978, “Carrier activation” and glucose transport in Chinese hamster fibroblasts, Biochem. Biophys. Res. Commun. 85:1526–1534.

    Google Scholar 

  • Fraser, T., and Russell, M. D., 1975, Is insulin’s second messenger calcium? Proc. Roy. Soc. Med. 68: 785–791.

    PubMed  CAS  Google Scholar 

  • Gliemann, J., Osterlind, K., Vinten, J., and Gammeltoff, S., 1972, A procedure for measurement of distribution space in isolated fat cells, Biochim. Biophys. Acta 286: 1–9.

    PubMed  CAS  Google Scholar 

  • Goldin, S. M., and Rhoden, V., 1979, Reconstitution and “transport specificity fractionation” of the human erythrocyte glucose transport system, J. Biol. Chem. 253: 2575–2583.

    Google Scholar 

  • Gorga, J. C., and Lienhard, G. E., 1982, Insulin stimulation of glucose transport in adipocytes, Fed. Proc. 41: 627.

    Google Scholar 

  • Gorga, F. R., Baldwin, S. A., and Lienhard, G. E., 1979, The monosaccharide transporter from human erythrocytes is heterogeneously glycosylated, Biochem. Biophys. Res. Commun. 91: 995–961.

    Google Scholar 

  • Gould, M. K., and Chaudry, I. H., 1970, The action of insulin on glucose uptake by isolated rat soleus muscle, I. Effects of cations, Biochim. Biophys. Acta 215: 247–249.

    Google Scholar 

  • Griffin, J. F., Rampal, A. L., and Jung, C. Y., 1982, Inhibition of glucose transport in human erythrocytes by cytochalasins: A model based on diffraction studies, Proc. Natl. Acad. Sci. USA 79:3759–3763.

    Google Scholar 

  • Grinstein, S., and Erlij, D., 1976, Action of insulin and cell calcium: Effect of ionophore A23187, J. Membr. Biol. 29: 313–328.

    PubMed  CAS  Google Scholar 

  • de Haen, C., Muchmore, D. B., and Little, S. A., 1980, Stimulation of intracellular H202 production in rat epididymal adipocytes by insulin, insulin fragments, and other hormones and growth factors with insulin-like activities, Insulin Chemistry, Structure and Function of Insulin and Related Hormones (D. Brandenburg and A. Wollmer, eds.), Walter de Gruyter and Co., New York, pp. 461–468.

    Google Scholar 

  • Hall, S., Keo, L., Yu, K. T., and Gould, M. K., 1982, Effect of ionophore A23187 on basal and insulin-stimulated sugar transport by rat soleus muscle, Diabetes 31: 846–850.

    PubMed  CAS  Google Scholar 

  • Haring, H. U., Kemmler, W., Renner, R., and Hepp, H. D., 1978, Initial lagphase in the action of insulin on glucose transport and cAMP levels in fat cells, FEBS Lett. 95: 177–180.

    PubMed  CAS  Google Scholar 

  • Haring, H. U., Biermann, E., and Kemmler, W., 1981, Coupling of insulin binding and insulin action on glucose transport in fat cells, Am. J. Physiol. 240: E556 - E565.

    PubMed  CAS  Google Scholar 

  • Hatanka, M., 1974, Transport of sugars in tumor cell membranes, Biochim. Biophys. Acta 355: 77–104.

    Google Scholar 

  • Hatanaka, M., 1976, Saturable and nonsaturable process of sugar uptake: Effect of oncogenic transformation in transport and uptake of nutrients, J. Cell Physiol. 89: 745–750.

    PubMed  CAS  Google Scholar 

  • Hladky, S. B., and Haydon, D. A., 1970, Discreteness of conductance change in bimolecular lipid membranes in the presence of certain antibiotics, Nature 225: 451–453.

    PubMed  CAS  Google Scholar 

  • Hokin, L. E., 1981, Reconstitution of “carriers” in artificial membranes, J. Membr. Biol. 60:77–93. Hollos`zy, J. O., and Narahara, H. H., 1966, Enhanced permeability to sugar associated with muscle contraction, J. Gen. Physiol. 50: 551–562.

    Google Scholar 

  • Holloszy, J. O., and Narahara, H. H., 1967, Studies in tissue permeability: X. Changes in permeability to 3-O-methylglucose associated with contraction of isolated frog muscle, J. Biol. Chem. 240: 3493–3500.

    Google Scholar 

  • Holman, G. D., and Reis, W. D., 1982, Side-specific analogues for the rat adipocyte sugar transport system, Biochim. Biophys. Acta 685: 78–86.

    PubMed  CAS  Google Scholar 

  • Innui, K.-I., Tillotson, L. G., and Isselbacher, K. J., 1980, Hexose and amino acid transport by chicken embryo fibroblasts infected with temperature-sensitive mutant of Rous sarcoma virus, Biochim. Biophys. Acta 598: 616–627.

    Google Scholar 

  • Jacobs, B. O., and Krahl, M. E., 1973, The effects of divalent cations and insulin on protein synthesis in adipose cells, Biochim. Biophys. Acta 319: 410–415.

    PubMed  CAS  Google Scholar 

  • Jacobs, S., Chang, K., and Cuatrecasas, P., 1978, Antibodies to purified insulin receptors have insulin-like activity, Science 200: 1283–1285.

    PubMed  CAS  Google Scholar 

  • Jarett, L., and Smith, R. M., 1974, Electron microscopic demonstration of insulin receptors on adipocyte plasma membranes utilizing a ferritin-insulin conjugate, J. Biol. Chem. 249: 7024–7031.

    PubMed  CAS  Google Scholar 

  • Jarett, L., and Smith, R. M., 1975, Ultrastructural localization of insulin receptors on adipocytes, Proc. Natl. Acad. Sci. USA 72:3526–3530.

    Google Scholar 

  • Jarett, L., and Smith, R. M., 1977, The natural occurrence of insulin receptors in groups on adipocyte plasma membranes as demonstrated with monomeric ferritin-insulin, J. Supramol. Struct. 6: 45–59.

    PubMed  CAS  Google Scholar 

  • Jarett, L., and Smith, R. M., 1979, Effect of cytochalasin B and D on groups of insulin receptors and on insulin action in rat adipocytes, Clin. Invest. 6: 571–579.

    Google Scholar 

  • Jarrett, D. B., Roth, J., Kahn, C. R., and Flier, J. S., 1976, Direct method for detection and characterization of cell surface receptors for insulin by means of 125I-labeled autoantibodies against the insulin receptors, Proc. Natl. Acad. Sci. USA 73: 4115–4119.

    PubMed  CAS  Google Scholar 

  • Jones, M. N., and Nickson, J. K., 1978, Electrical properties and glucose permeability of bilayer lipid membranes on incorporation of erythrocyte membrane extracts, Biochim. Biophys. Acta 509: 260–271.

    PubMed  CAS  Google Scholar 

  • Jones, M. N., and Nickson, J. K., 1981, Monosaccharide transport proteins of the human erythrocyte membrane, Biochim. Biophys. Acta 650: 1–20.

    PubMed  CAS  Google Scholar 

  • Jung, C. Y, 1971a, Evidence of high stability of the glucose transport carrier function in human red cell ghosts extensively washed in various media, Arch. Biochem. Biophys. 146: 215–226.

    PubMed  CAS  Google Scholar 

  • Jung, C. Y., 1971b, Permeability of bimolecular membranes made from lipid extracts of human red cell ghosts to sugars, J. Membr. Biol. 5: 200–214.

    CAS  Google Scholar 

  • Jung, C. Y., and Carlson, L. M., 1975, Glucose transport carrier in human erythrocyte membranes, J. Biol. Chem. 250: 3217–3220.

    PubMed  CAS  Google Scholar 

  • Jung, C. Y., and Rampal, A. L., 1977, Cytochalasin B binding sites and glucose transport carrier in human erythrocyte ghosts, J. Biol. Chem. 252: 5456–5463.

    PubMed  CAS  Google Scholar 

  • Jung, C. Y., Hsu, T. L., Hah, J. S., Cha, C., and Haas, M. N., 1980, Glucose transport carrier of human erythrocytes, J. Biol. Chem. 253: 361–364.

    Google Scholar 

  • Kahlenberg, A., and Zala, C. A., 1977, Reconstitution of D-glucose transport in vesicles composed of lipids and intrinsic protein (zone 4.5) of the human erythrocyte membrane, J. Supramol. Struct. 7: 287–300.

    PubMed  CAS  Google Scholar 

  • Kahn, C. R., Flier, J. S., Bar, R. S., Archer, J. A., Gorden, P., Martin, M. M., and Roth, J., 1976, The syndromes of insulin resistance and acanthosis nigricans, Insulin-receptor disorders in man, N. Engl. J. Med. 294: 739–745.

    PubMed  CAS  Google Scholar 

  • Kahn, C. R., Baird, K., Flier, J. S., and Jarrett, D. B., 1977, Effects of autoantibodies to the insulin receptor on isolated adipocytes. Studies of insulin binding and insulin action, J. Clin. Invest. 60: 1094–1106.

    PubMed  CAS  Google Scholar 

  • Kahn, C. R., Baird, K., Baird, R., Jarrett, D. B., and Flier, J. S., 1978a, Direct demonstration that receptor cross-linking or aggregation is important in insulin action, Proc. Natl. Acad. Sci. USA 75: 4209–4213.

    PubMed  CAS  Google Scholar 

  • Kahn, C. R., Baird, K., Jarrett, D. B., and Flier, J. S., 1978b, Monovalent anti-receptor antibodies regain insulinomimetic actions when crosslinked by a second antibody, Diabetes 27 (Suppl. 2): 449.

    Google Scholar 

  • Kalckar, H. M., and Ullrey, D., 1973, Two distinct types of enhancement of glucose uptake into hamster cells: Tumor-virus transformation and hexose starvation, Proc. Nat!. Acad. Sci. USA 70: 2502–2504.

    PubMed  CAS  Google Scholar 

  • Kalckar, H. M., Ullrey, D., Kijomoto, S., and Hakomori, S., 1973, Carbohydrate catabolism and the enhancement of uptake of galactose in hamster cells transformed by polyoma virus, Proc. Natl. Acad. Sci. USA 70: 839–843.

    PubMed  CAS  Google Scholar 

  • Karnieli, E., Zamowski, M. J., Hissin, P. J., Simpson, I. A., Salans, L. B., and Cushman, S. W., 1981, Insulin-stimulated translocation of glucose transport systems in the isolated rat adipose cell, J. Biol. Chem. 256: 4772–4777.

    PubMed  CAS  Google Scholar 

  • Kasahara, M., and Hinkle, P. C., 1976, Reconstitution of D-glucose transport catalyzed by a protein fraction from human erythrocytes in sonicated liposomes, Proc. Natl. Acad. Sci. USA 73: 396–400.

    PubMed  CAS  Google Scholar 

  • Kasahara, M., and Hinkle, P. C., 1977, Reconstitution and purification of the D-glucose transporter from human erythrocytes, J. Biol. Chem. 252: 7384–7390.

    PubMed  CAS  Google Scholar 

  • Katzen, H. M., and Soderman, D. D., 1975, Interaction of carbohydrate binding sites on concanavalin Aagarose with receptors on adipocytes studied by buoyant density method, Biochemistry 14: 2293–2298.

    PubMed  CAS  Google Scholar 

  • Kawai, S., and Hanafusa, H., 1971, The effects of reciprocal changes in temperature on the transformed state of cells infected with a Rous sarcoma virus mutant, Virology 46: 470–479.

    PubMed  CAS  Google Scholar 

  • Kiechle, F. L., Jarett, L., Kotagal, N., and Popp, D. A., 1981, Partial purification from rat adipocyte plasma membranes of a chemical mediator which stimulates the action of insulin on pyruvate dehydrogenase, J. Biol. Chem. 256: 2945–2951.

    PubMed  CAS  Google Scholar 

  • King, G. L., Rechler, M. M., and Kahn, C. R., 1982, Interactions between the receptors for insulin and the insulin-like growth factors on adipocytes, J. Biol. Chem. 257: 10001–10006.

    PubMed  CAS  Google Scholar 

  • Kissebah, A. H., Hope-Gill, H., Vydelingum, N., Tulloch, B., Clarke, P., and Fraser, T. R., 1975, Mode of insulin action, Lancet 1: 144–147.

    PubMed  CAS  Google Scholar 

  • Kletzien, R. F., and Perdue, J. F., 1974, Sugar transport in chick embryo fibroblasts, J. Biol. Chem. 249: 3375–3382.

    PubMed  CAS  Google Scholar 

  • Kletzien, R. F., and Perdue, J. F., 1975a, Regulation of sugar transport in chick embryo fibroblasts infected with a temperature-sensitive mutant of RSV, Cell 6: 513–520.

    CAS  Google Scholar 

  • Kletzien, R. F., and Perdue, J. F., 1975b, Induction of sugar transport in chick embryo fibroblasts by hexose starvation, J. Biol. Chem. 250: 593–600.

    PubMed  CAS  Google Scholar 

  • Kono, T., and Barham, F. W., 1971a, Insulin-like effects of trypsin on fat cells. Localization of the metabolic steps and the cellular site affected by the enzymes, J. Biol. Chem. 246: 6204–6209.

    PubMed  CAS  Google Scholar 

  • Kono, T., and Barham, F. W., 1971b, The relationship between the insulin-binding capacity of fat cells and the cellular response to insulin, J. Biol. Chem. 246: 6210–6216.

    PubMed  CAS  Google Scholar 

  • Kono, T., Robinson, F. W., Sarver, J. A., Vega, F. V., and Pointer, R. A., 1977a, Action of insulin in fat cells. Effects of low temperature, uncouplers of oxidative phosphorylation, and respiratory inhibitors, J. Biol. Chem. 252: 2226–2233.

    PubMed  CAS  Google Scholar 

  • Kono, T., Vega, F. V., Raines, K. B., and Shumway, S. J., 1977b, Deactivation of the once stimulated sugar transport reaction in fat cells, Fed. Proc. 36: 341.

    Google Scholar 

  • Kono, T., Suzuki, K., Dansey, L. E., Robinson, F. W., and Blevins, T. L., 1981, Energy-dependent and protein synthesis-independent recycling of the insulin-sensitive glucose transport mechanism in fat cells, J. Biol. Chem. 256: 6400–6407.

    PubMed  CAS  Google Scholar 

  • Krasne, S., Eisenman, G., and Szabo, G., 1971, Freezing and melting of lipid bilayers and the mode of action of nonactin, valinomycin, and gramicidin, Science 174: 412–415.

    PubMed  CAS  Google Scholar 

  • Lacko, L., Wittke, B., and Kromphardt, H., 1972, Zur kinetik der glucose-aufnahme in erythrocyten effekt der trans-konzentration, Eur. J. Biochem. 25: 447–454.

    PubMed  CAS  Google Scholar 

  • Lawrence, J. C., Jr., and Lamer, J., 1978, Effects of insulin, methoxamine, and calcium and glycogen synthase in rat adipocytes, Mol. Pharamacol. 14: 1079–1091.

    CAS  Google Scholar 

  • Le Fevre, P. G., 1961, Sugar transport in the red blood cells: Structure-activity relationships in substrates and antagonists, Pharmacol. Rev. 13: 39–45.

    Google Scholar 

  • Letarte, J., and Reynold, A. E., 1969, Ionic effects on glucose transport and metabolism by isolated mouse fat cells incubated with or without insulin. I. Lack of effect of medium Ca’, Mg2+ or PO43. Biochim. Biophys. Acta 183: 350–356.

    PubMed  CAS  Google Scholar 

  • Lidgard, G. P., and Jones, M. N., 1975, D-Glucose permeability of black lipid membranes modified by human erythrocyte membrane fractions, J. Membr. Biol. 21: 1–10.

    PubMed  CAS  Google Scholar 

  • Lienhard, G. E., Gorga, F. R., Orasky, J. E., and Zoccol, M. A., 1977, Monosaccharide transport system of the human erythrocyte: Identification of the cytochalasin B binding component, Biochemistry 16: 4921–4926.

    PubMed  CAS  Google Scholar 

  • Lin, S., and Snyder, C. E., Jr., 1977, High affinity cytochalasin B binding to red cell membrane proteins which are unrelated to sugar transport, J. Biol. Chem. 252: 5464–5471.

    PubMed  CAS  Google Scholar 

  • Lin, S., and Spudich, J. A., 1974a, Binding of cytochalasin B to a red cell membrane protein, Biochem. Biophys. Res. Commun. 61: 1471–1476.

    PubMed  CAS  Google Scholar 

  • Lin, S., and Spudich, J. A., 1974b, Biochemical studies on the mode of action of cytochalain B, J. Biol. Chem. 249: 5578–5783.

    Google Scholar 

  • Lin, S., Santi, D. V., and Spudich, J. A., 1974, Biochemical studies on the mode of action of cytochalasin B, J. Biol. Chem. 249: 2268–2274.

    PubMed  CAS  Google Scholar 

  • Lockwood, D. H., and East, L. E., 1974, Studies of the insulin-like actions of polyamines on lipid and glucose metabolism in adipose tissue cells, J. Biol. Chem. 249: 7717–7722.

    PubMed  CAS  Google Scholar 

  • Lockwood, D. H., Lipsky, J. J., Meronk, F., Jr., and East, L. E., 1971, Actions of polyamines on lipid and glucose metabolism of fat cells, Biochem. Biophys. Res. Commun. 44: 600–617.

    CAS  Google Scholar 

  • Lundahl, P., Acevedo, F., Froman, G., and Phutrakul, S., 1981, The stereospecific D-glucose transport activity of cholate extracts from human erythrocyte membranes, Biochim. Biophys. Acta 644: 101–107.

    PubMed  CAS  Google Scholar 

  • Martineau, R., Kohlbacher, M. S., Shaw, S. N., and Amos, H., 1972, Enhancement of hexose entry into chick fibroblasts by starvation: Differential effect on galactose and glucose, Proc. Natl. Acad. Sci. USA 69: 3407–3411.

    PubMed  CAS  Google Scholar 

  • Massague, J., Pilch, P. F., and Czech, M. P., 1980, Electrophoretic resolution of three major insulin receptor structures with unique subunit stoichiometries, Proc. Natl. Acad. Sci. USA 77: 7137–7141.

    PubMed  CAS  Google Scholar 

  • May, J. M., and de Haen, C., 1979a, Insulin-stimulated intracellular hydrogen peroxide production in rat epididymal fat cells, J. Biol. Chem. 254: 2214–2220.

    CAS  Google Scholar 

  • May, J. M., and de Haen, C., 1979b, The insulin-like effect of hydrogen peroxide on pathways of lipid synthesis in rat adipocytes, J. Biol. Chem. 254:9017–9021.

    Google Scholar 

  • Meuli, C., and Froesch, E. R., 1977, Insulin and nonsupressible insulin-like activity (NSILA-S) stimulate the same glucose transport system via two separate receptors in rat heart, Biochem. Biophys. Res. Commun. 75: 689–695.

    PubMed  CAS  Google Scholar 

  • Mizel, S. B., and Wilson, L., 1974, Inhibition of the transport of several hexoses in mammalian cells by cytochalasin B, J. Biol. Chem. 247: 4102–4105.

    Google Scholar 

  • Muchmore, D. B., Little, S. A., and de Haen, C., 1981, A dual mechanism of action of ocytocin in rat epididymal fat cells, J. Biol. Chem. 256: 365–372.

    CAS  Google Scholar 

  • Muchmore, D. B., Little, S. A., and de Haen, C., 1982, Counterregulatory control of intracellular hydrogen peroxide production by insulin and lipolytic hormones in isolated rat epididymal fat cells: A role of free fatty acids, Biochemistry 21: 3886–3892.

    PubMed  CAS  Google Scholar 

  • Mukherjee, S. P., and Lynn, W. S., 1977, Reduced nicotinamide adenine dinucleotide phosphate oxidase in adipocyte plasma membrane and its activation by insulin. Possible role in the hormone’s effects on adenylate cyclase and the hexose monophosphate shunt, Arch. Biochem. Biophys. 184: 69–76.

    PubMed  CAS  Google Scholar 

  • Mukherjee, S. P., Lane, R. H., and Lynn, W. S., 1978, Endogenous hydrogen peroxide and peroxidative metabolism in adipocytes in response to insulin and sulfhydryl reagents, Biochem. Pharmacol. 27: 2589–2594.

    PubMed  CAS  Google Scholar 

  • Mullins, R. E., and Langdon, R. G., 1980a, Maltosyl isothiocyanate: An affinity label for the glucose transporter of the human erythrocyte membrane. 1. Inhibition of glucose transport, Biochemistry 19: 1199–1205.

    PubMed  CAS  Google Scholar 

  • Mullins, R. E., and Langdon, R. G., 1980b, Maltosyl isothiocyanate: An affinity label for the glucose transporter of the human erythrocyte membrane. 2. Identification of the transporter, Biochemistry 19: 1205–1211.

    PubMed  CAS  Google Scholar 

  • Nickson, J. K., and Jones, M. N., 1977, Reconstitution of the monosaccharide-transport system of the human erythrocyte membrane, Biochem. Trans. 5: 147–149.

    CAS  Google Scholar 

  • Olden, K., Pratt, R. M., Jaworski, C., and Yamada, K. M., 1974, Evidence for role of glycoprotein carbohydrates in membrane transport: Specific inhibition by tunicamycin, Proc. Natl. Acad. Sci. USA 76: 791–795.

    Google Scholar 

  • Olefsky, J. M., 1978, Mechanisms of the ability of insulin to activate the glucose-transport system in rat adipocytes, Biochem. J. 172: 137–145.

    PubMed  CAS  Google Scholar 

  • Oppenheimer, C. L., and Czech, M. P., 1983, Affinity labeling of receptors, in: Growth and Maturation Factors, John Wiley and Sons, New York.

    Google Scholar 

  • Oppenheimer, C. L., Pessin, J. E., Massague, J., Gitomer, W., and Czech, M. P., 1983, Insulin action rapidly modulates the affinity of the insulin-like growth factor II receptor, J. Biol. Chem. 258: 4824–4830.

    PubMed  CAS  Google Scholar 

  • Pessin, J. E., Tillotson, L. G., Yamada, K., Gitomer, W., Carter-Su, C., Mora, R., Isselbacher, K. J., and Czech, M. P., 1982, Identification of the stereospecific hexose transporter from starved and fed chicken embryo fibroblasts, Proc. Natl. Acad. Sci. USA 79: 2286–2290.

    PubMed  CAS  Google Scholar 

  • Phutrakul, S., and Jones, M. N., 1979, The permeability of bilayer lipid membranes on the incorporation of erythrocyte membrane extracts and the identification of the monosaccharide transport proteins, Biochim. Biophys. Acta 550: 188–200.

    PubMed  CAS  Google Scholar 

  • Pillion, D. J., and Czech, M. P., 1978, Antibodies against intrinsic adipocyte plasma membrane proteins activate D-glucose transport independent of interaction with insulin binding sites, J. Biol. Chem. 253: 3761–3764.

    PubMed  CAS  Google Scholar 

  • Pillion, D. J., Grantham, J. R., and Czech, M. P., 1979, Biological properties of antibodies against rat adipocyte intrinsic membrane proteins. Dependence on multivalency for insulin-like activity, J. Biol. Chem. 254: 3211–3220.

    PubMed  CAS  Google Scholar 

  • Plagemann, P. G. W., and Richey, D. P., 1974, Transport of nucleosides, nucleic acid bases, choline and glucose by animal cells in culture, Biochim. Biophys. Acta 344: 263–305.

    PubMed  CAS  Google Scholar 

  • Rampal, A. L., Pinkofsky, H. B., and Jung, C. Y., 1980, Structure of cytochalasin B binding sites in human erythrocyte membranes, Biochemistry 19: 679–683.

    PubMed  CAS  Google Scholar 

  • Reeves, J. P., 1975, Calcium-dependent stimulation of 3-O-methylglucose uptake in rat thymocytes by the divalent cation ionophore A 23187, J. Biol. Chem. 250: 9428–9430.

    PubMed  CAS  Google Scholar 

  • Rendi, R., 1964, Water extrusions in isolated subcellular fractions, Biochim. Biophys. Acta 84: 694–706.

    PubMed  CAS  Google Scholar 

  • Renner, E. D., Plagemann, P. G. W., and Bemlohr, R. W., 1972, Permeation of glucose by simple and facilitated diffusion by Novikoff rat hepatoma cell in suspension culture and relationship of glucose metabolism, J. Biol. Chem. 247: 5765–5776.

    PubMed  CAS  Google Scholar 

  • Rihan, Z., Jarrett, R. J., and Keen, H., 1967, EDTA and insulin: A study of the effect of salts of EDTA upon insulin action in vivo and in vitro, Diabetologia 3: 449–452.

    PubMed  CAS  Google Scholar 

  • Rodbell, M., 1964, Metabolism of isolated fat cells. 1. Effects of hormones on glucose metabolism and lipolysis, J. Biol. Chem. 239: 375–380.

    PubMed  CAS  Google Scholar 

  • Rodbell, M., 1966, Metabolism of isolated fat cells. 1. The similar effects of phospholipase C, and of insulin on glucose and amino acid metabolism, J. Biol. Chem. 241: 130–139.

    PubMed  CAS  Google Scholar 

  • Rosenthal, J. W., and Fain, J. N., 1971, Insulin-like effect of clostridial phospholipase C, neuraminidase, and other bacterial factors on brown fat cells, J. Biol. Chem. 246: 5888–5895.

    PubMed  CAS  Google Scholar 

  • Roth, J., 1973, Peptide hormone binding to receptors: A review of direct studies in vitro, Metabolism 22: 1059–1073.

    PubMed  CAS  Google Scholar 

  • Salter, D. W., and Weber, M. J., 1979, Glucose-specific cytochalasin B binding is increased in chicken embryo fibroblasts transformed by Rous sarcoma virus, J. Biol. Chem. 254: 3554–3561.

    PubMed  CAS  Google Scholar 

  • Salter, D. W., Baldwin, S. A., Lienhard, G. E., and Weber, M. J., 1982, Proteins antigenically related to the human erythrocyte glucose transporter in normal and Rous sarcoma virus-transformed chicken embryo fibroblasts, Proc. Natl. Acad. Sci. USA 79: 1540–1544.

    PubMed  CAS  Google Scholar 

  • Saltiel, A., Jacobs, S., Siegel, M., and Cuatrecasas, P., 1981, Insulin stimulates the release from liver plasma membranes of a chemical modulator of pyruvate dehydrogenase, Biochem. Biophys. Res. Commun. 102: 1041–1047.

    PubMed  CAS  Google Scholar 

  • Schudt, C., Gaertner, U., and Pette, D., 1976, Insulin action on glucose transport and calcium fluxes in developing muscle cells in vitro, Eur. J. Biochem. 68: 103–111.

    PubMed  CAS  Google Scholar 

  • Seals, J. R., and Czech, M. P., 1980, Evidence that insulin activates in intrinsic plasma membrane protease in generating a secondary chemical mediator, J. Biol. Chem. 255: 6529–6531.

    PubMed  CAS  Google Scholar 

  • Seals, J. R., and Czech, M. P., 1981, Characterization of a pyruvate dehydrogenase activator released by adipocyte plasma membranes in response to insulin, J. Biol. Chem. 256: 2894–2899.

    PubMed  CAS  Google Scholar 

  • Seals, J. R., and Jarett, L., 1980, Activation of pyruvate dehydrogenase by direct addition of insulin to an isolated plasma membrane/mitochondria mixture: Evidence for generation of insulin’s second messenger in a subcellular system, Proc. Natl. Acad. Sci. USA 77: 77–81.

    PubMed  CAS  Google Scholar 

  • Sen, A. K., and Widdas, W. F., 1962, Determination of the temperature and pH dependence of glucose transfer across the human erythrocyte membrane measured by glucose exit, J. Physiol. 160: 392–403.

    PubMed  CAS  Google Scholar 

  • Shanahan, M. F., 1982, Cytochalasin B, J. Biol. Chem. 257: 7290–7293.

    PubMed  CAS  Google Scholar 

  • Shanahan, M. F., and Czech, M. P., 1977, Purification and reconstitution of the adipocyte plasma membrane D-glucose transport system, J. Biol. Chem. 252: 8341–8343.

    PubMed  CAS  Google Scholar 

  • Shanahan, M. F., and Jacquez, J. A., 1978, Differential labeling of components in human erythrocyte membranes associated with the transport of glucose, Membr. Biochem. 1: 239–267.

    PubMed  CAS  Google Scholar 

  • Shanahan, M. F., Olson, S. A., Weber, M. J., Lienhard, G. E., and Gorga, J. C., 1982, Photolabeling of glucose-sensitive cytochalasin B binding proteins in erythrocyte, fibroblasts and adipocyte membranes, Biochem. Biophys. Res. Commun. 107: 38–43.

    PubMed  CAS  Google Scholar 

  • Shemyakin, M. M., Ovchinnikov, Y. A., Ivanov, V. I., Antonov, V. K., Vinogradova, E. I., Shkrob, A. M., Malenkov, G. G., Evstratov, A. V., Laine, I. A., Melnik, E. I., Ryabova, I. D., 1969, Cyclodepsipeptides as chemical tools for studying ionic transport through membranes, J. Membr. Biol. 1: 402–430.

    Google Scholar 

  • Siegal, J., and Olefsky, J. M., 1980, Role of intracellular energy in insulin’s ability to activate 3–0methylglucose transport by rat adipocytes, Biochemistry 19: 2183–2190.

    Google Scholar 

  • Simpson, I. A., Wheeler, T. J., Sogin, D. C., Hinkle, P. C., and Cushman, S. W., 1981, Characterization of intracellular glucose transport systems and their insulin-induced translocation to the plasma membrane in the rat adipose cell using [3H]cytochalasin B and a rabbit antibody against the human erythrocyte glucose transporter, J. Cell Biol. 91: 413a.

    Google Scholar 

  • Sogin, D. C., and Hinkle, P. C., 1978, Characterization of the glucose transporter from human erythrocytes, J. Supramol. Struct. 8: 447–453.

    PubMed  CAS  Google Scholar 

  • Sogin, D. C., and Hinkle, P. C., 1980a, Binding of cytochalasin B to human erythrocyte glucose transporter, Biochemistry 19: 5417–5420.

    PubMed  CAS  Google Scholar 

  • Sogin, D. C., and Hinkle, P. C., 1980b, Immunological identification of the human erythrocyte glucose transporter, Proc. Natl. Acad. Sci. USA 77: 5725–5729.

    PubMed  CAS  Google Scholar 

  • Steck, T. L., 1974, The organization of proteins in the human red blood cell membrane, J. Cell Biol. 62: 1–19.

    PubMed  CAS  Google Scholar 

  • Suzuki, K., and Kono, T., 1980, Evidence that insulin causes translocation of glucose transport activity to the plasma membrane from an intracellular storage site, Proc. Natl. Acad. Sci. USA 77: 2542–2545.

    PubMed  CAS  Google Scholar 

  • Taverna, R. D., and Langdon, R. G., 1973, Reversible association of cytochalasin B with the human erythrocyte membrane, Biochim. Biophys. Acta 323: 207–219.

    PubMed  CAS  Google Scholar 

  • Taylor, N. F., and Gagneja, G. L., 1973, A model for the mode of action of cytochalasin B inhibition of D-glucose transport in the human erythrocyte, Can. J. Biochem. 53: 1078–1084.

    Google Scholar 

  • Tosteson, D. C., Andreoli, T. E., Tieffenberg, M., and Cook, P., 1968, The effects of macrocyclic compounds on cation transport in sheep red cells and thin and thick lipid membranes, J. Gen. Physiol. 51: 373.

    PubMed  CAS  Google Scholar 

  • Ullrey, D., Gammon, M. T., and Kalckar, H. M., 1975, Uptake patterns and transport enhancements in cultures of hamster cells deprived of carbohydrates, Arch. Biochem. Biophys. 167: 410–416.

    PubMed  CAS  Google Scholar 

  • Urry, D. W., 1971, The gramicidin A transmembrane channel: A proposed (L,D) helix, Proc. Natl. Acad. Sci. USA 68: 672–676.

    PubMed  CAS  Google Scholar 

  • Vega, F. V., and Kono, T., 1979, Sugar transport in fat cells: Effects of mechanical agitation, cell-bound insulin, and temperature, Arch. Biochem. Biophys. 192: 120–127.

    PubMed  CAS  Google Scholar 

  • Vega, F. V., Key, R. J., Jordan, J. E., and Kono, T., 1980, Reversal of insulin effects in fat cells may require energy for deactivation of glucose transport but not for deactivation of phosphodiesterase, Arch. Biochem. Biophys. 203: 167–173.

    PubMed  CAS  Google Scholar 

  • Venuta, S., and Rubin, H., 1973, Sugar transport in normal and Rous sarcoma virus-transformed chick-embryo fibroblasts, Proc. Natl. Acad. Sci. USA 70: 653–657.

    PubMed  CAS  Google Scholar 

  • Vinten, J., 1978, Cytochalasin B inhibition and temperature dependence of 3-O-methylglucose transport in fat cells, Biochim. Biophys. Acta 511: 259–273.

    PubMed  CAS  Google Scholar 

  • Vinten, J. Gliemann, J., and Sterlind, K., 1976, Exchange of 3-O-methylglucose in isolated fat cells, J. Biol. Chem. 254:794–800.

    Google Scholar 

  • Wardzala, L. J., and Jeanrenaud, B., 1981, Potential mechanism of insulin action on glucose transport in the isolated rat diaphragm, J. Biol. Chem. 256: 7090–7093.

    PubMed  CAS  Google Scholar 

  • Wardzala, L. J., Cushman, S. W., and Salans, L. B., 1978, Mechanism of insulin action on glucose transport in the isolated rat adipose cell, J. Biol. Chem. 253: 8002–8005.

    PubMed  CAS  Google Scholar 

  • Weber, M. J., 1973, Hexose transport in normal and in Rous sarcoma virus-transformed cells, J. Biol. Chem. 248: 2978–2983.

    PubMed  CAS  Google Scholar 

  • Wheeler, T. J., Simpson, I. A., Sogin, D. C., Hinkle, P. C., and Cushman, S. W., 1982, Detection of the rat adipose cell glucose transporter with antibody against the human red cell glucose transporter, Biochem. Biophys. Res. Commun. 105: 89–95.

    PubMed  CAS  Google Scholar 

  • Whitesell, R. R., and Gliemann, J., 1979, Kinetic parameters of transport of 3-O-methylglucose and glucose in adipocytes, J. Biol. Chem. 254: 5276–5283.

    PubMed  CAS  Google Scholar 

  • Wilbrandt, W., 1978, Cell Membrane Receptors for Drug and Hormones: A Multidisciplinary Approach (R. W. Straub and L. Bolis, eds.), Raven Press, New York, pp. 243–249.

    Google Scholar 

  • Yu, K. T., and Gould, M. K., 1977, Insulin-stimulated sugar transport and [125I]insulin binding by rat soleus muscle: Permissive effect of ATP, Biochem. Biophys. Res. Commun. 77: 203–210.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Pessin, J.E., Czech, M.P. (1985). Hexose Transport and Its Regulation in Mammalian Cells. In: Martonosi, A.N. (eds) The Enzymes of Biological Membranes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4601-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4601-2_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4603-6

  • Online ISBN: 978-1-4684-4601-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics