Skip to main content

Structural Distinctions among Acetylcholinesterase Forms

  • Chapter
The Enzymes of Biological Membranes

Abstract

Acetylcholinesterase (EC 3.1.1.7) is associated primarily with cells involved in cholinergic synaptic transmission, but it is also found in a variety of other neuronal and a few nonneuronal cells, like erythrocytes, in which its function is unclear (Nachmansohn, 1959). The catalytic properties of acetylcholinesterase have been studied intensively for more than 40 years, and details about its specificity and catalytic mechanism and features that distinguish it from the similar enzyme cholinesterase (EC 3.1.1.8) can be found in many reviews (Froede and Wilson, 1971; Rosenberry, 1975; Massoulié and Bon, 1982). Although no role in synaptic transmission for cholinesterase has yet been demonstrated, it is remarkable that both these enzymes exist in multiple forms with striking structural parallels (see Massoulié and Bon, 1982). This review will focus on the protein structures of various acetylcholinesterase forms and on the relationship of these structures to cellular localization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allemand, P., Bon, S., Massoulié, J., and Vigny, M., 1981, The quaternary structure of chicken acetyl-cholinesterase and butyrylcholinesterase; effect of collagenase and trypsin, J. Neurochem. 36:860–867.

    PubMed  CAS  Google Scholar 

  • Amsterdam, A., Lamed, R., and Silman, L., 1975, Actomyosin from electric organ tissue of electric eel, Isr. J. Med. Sci. 11:1183.

    PubMed  CAS  Google Scholar 

  • Anglister, L., and Silman, I., 1978, Molecular structure of elongated forms of electric eel acetylcholinesterase, J. Mol. Biol. 125:293–311.

    PubMed  CAS  Google Scholar 

  • Barnett, P., and Rosenberry, T. L., 1978, A residual subunit fragment in the conversion of 18S to 11S acetylcholinesterase, Fed. Proc. 36:485.

    Google Scholar 

  • Belthorn, M. B., Blumenfeld, O. O., and Gallop, P. M., 1970, Acetylcholinesterase of human erythrocyte membrane, Biochem. Biophys. Res. Commun. 39:267–273.

    Google Scholar 

  • Betz, W., and Sakmann, B., 1973, Effects of proteolytic enzymes on function and structure of frog neuromuscular junctions, J. Physiol. (London) 230:673–688.

    CAS  Google Scholar 

  • Bon, S., and Massoulié, J., 1976, Molecular forms of Electrophorus acetylcholinesterase. The catalytic subunits: Fragmentation, intra-and intersubunit disulfide bonds, FEBS Lett. 71:273–278.

    PubMed  CAS  Google Scholar 

  • Bon, S., and Massouilié, J., 1978, Collagenase sensitivity and aggregtion properties of Electrophorus acetylcholinesterase, Eur. J. Biochem. 89:89–94.

    PubMed  CAS  Google Scholar 

  • Bon, S., and Massoulié, J., 1980, Collagen-tailed and hydrophobic components of acetylcholinesterase in Torpedo marmorata electric organ, Proc. Nad. Acad. Sci. USA 77:4464–4468.

    CAS  Google Scholar 

  • Bon, S., Huet, M., Lemonnier, M., Rieger, F., and Massoulié, J., 1976, Molecular forms of Electrophorus acetylcholinesterase. Molecular weight and composition, Eur. J. Biochem. 68:523–530.

    PubMed  CAS  Google Scholar 

  • Bon, S., Cartaud, J., and Massoulié, J., 1978, The dependence of acetylcholinesterase aggregation at low ionic strength upon a polyanionic component, Eur. J. Biochem. 85:1–14.

    PubMed  CAS  Google Scholar 

  • Bon, S., Vigny, M., and Massoulieé, J., 1979, Asymmetric and globular forms of acetylcholinesterase in mammals and birds, Proc. Natl. Acad. Sci. USA 76:2546–2550.

    PubMed  CAS  Google Scholar 

  • Brockman, S. K., Przybylski, R. J., and Younkin, S. G., 1982, Cellular localization of the molecular forms of acetylcholinesterase in cultured embryonic rat myotubes, J. Neurosci. 2:1775–1785.

    PubMed  CAS  Google Scholar 

  • Brockman, S. K., Younkin, L. H., and Younkin, S. G., 1984, The effect of spontaneous electromechanical activity on the metabolism of acetylcholinesterase in cultured embryonic rat myotubes, J. Neurosci 4:131–140.

    PubMed  CAS  Google Scholar 

  • Bulger, J. E., Randall, W. R., Nieberg, P. S., Patterson, S. T., McNamee, M. G., and Wilson, B. W., 1982, Regulation of acetylcholinesterase forms in quail and chicken muscle cultures, Del). Neurosci. 5:474–483.

    CAS  Google Scholar 

  • Carson, S., Bon, S., Vigny, M., Massoulié, J., and Fardeau, M., 1979, Distribution of acetylcholinesterase molecular forms in neural and nonneural sections of human muscle, FEBS Lett. 97:348–352

    PubMed  CAS  Google Scholar 

  • Cartaud, J., Rieger, F., Bon, S., and Massoulié, J., 1975, Fine structure of electric eel acetylcholinesterase, Brain Res. 88:127–130.

    PubMed  CAS  Google Scholar 

  • Cartaud, J., Bon, S., and Massoulié, J., 1978, Electrophorus acetylcholinesterase. Biochemical and electron microscope characterization of low ionic strength aggregates, J. Cell Biol. 77:315–322.

    PubMed  CAS  Google Scholar 

  • Carter, J. L., and Brimijoin, S., 1981, Effects of acute and chronic denervation on the release of acetyl-cholinesterase and its molecular forms in rat diphragms, J. Neurochem. 36:1018–1025.

    CAS  Google Scholar 

  • Collins, P. L., and Younkin, S. G., 1982, Effect of denervation on the molecular forms of acetylcholin-esterase in rat diaphragm, J. Biol. Chem. 257:13638–13644.

    PubMed  CAS  Google Scholar 

  • Dailey, H. A., and Strittmatter, P., 1981, Orientation of the carboxyl and NH2 termini of the membrane-binding segment of cytochrome b5 on the same side of phospholipid bilayers, J. Biol. Chem. 256:3951–3955

    PubMed  CAS  Google Scholar 

  • Davey, B., and Younkin, S. G., 1978, Effect of nerve stump length on cholinesterase in denervated rat diaphragm, Exp. Neural. 59:168–175.

    CAS  Google Scholar 

  • Davey, B., Younkin, L. H., and Younkin, S G., 1979, Neural control of skeletal muscle cholinesterase: A study using organ-cultured rat muscle, J. Physiol. (London) 289:501–515.

    CAS  Google Scholar 

  • Doctor, B. P., Camp, S., Genetry, M. K., Taylor, S. S., and Taylor, P., 1983, Antigenic and structural differences in the catalytic subunits of the molecular forms of acetylcholinesterase, Proc. Natl. Acad. Sci. USA 80:5767–5771.

    PubMed  CAS  Google Scholar 

  • Drachman, D. B., 1972, Neurotrophic regulation of muscle cholinesterase: Effects of botulinum toxin and denervation, J. Physiol. (London) 226:619–627.

    CAS  Google Scholar 

  • Dudai, Y., 1977, Molecular forms of acetylcholinesterase in normal and mutant Drosophila, Isr. J. Med. Sci. 13:944.

    Google Scholar 

  • Dudai, Y., and Silman, I., 1973, The effect of Cat` on interaction of acetylcholinesterase with subcellular fractions of electric organ tissue from the electric eel, FEBS Leu. 30:49–52.

    CAS  Google Scholar 

  • Dudai, Y., and Silman, I., 1974a, Acetylcholinesterase, Meth. Enzymol. 34:571–580.

    CAS  Google Scholar 

  • Dudai, Y., and Silman, I., 1974b, The effects of solubilization procedures on the release and molecular state of actylcholinesterase from electric organ tissue, J. Nuerochem. 23:1177–1187.

    CAS  Google Scholar 

  • Dudai, Y., Herzberg, M., and Silman, I., 1973, Molecular structures of acetylcholinesterase from electric organ tissue of the electric eel, Proc. Natl. Acad. Sci. USA 70:2473–2476.

    PubMed  CAS  Google Scholar 

  • Dutta-Choudhury, T. A., and Rosenberry, T. L., 1984, Human erythrocyte acetylcholinesterase is an amphipathic protein whose short membrane-binding domain is removed by papain digestion, J. Biol. Chem. 259:5653–5660.

    PubMed  CAS  Google Scholar 

  • Engelman, D. M., and Steitz, T. A., 1981, The spontaneous insertion of proteins into and across membranes: The helical hairpin hypothesis, Cell 23:411–422.

    PubMed  CAS  Google Scholar 

  • Fambrough, D. M., Engel, A. G., and Rosenberry, T. L., 1982, Acetylcholinesterase of human erythrocytes and neuromuscular junctions: Homologies revealed by monoclonal antibodies, Proc. Natl. Acad. Sci. USA 79:1078–1082.

    PubMed  CAS  Google Scholar 

  • Fernandez, H. L., Duell, M. J., and Festoff, B. W., 1979, Cellular distribution of 16S acetylcholinesterase, J. Neurochem. 32:581–585.

    PubMed  CAS  Google Scholar 

  • Fernandez, H. L., Patterson, M. R., and Duell, M. J., 1980, Neurotrophic control of 16S acetylcholinesterase from mammalian skeletal muscle in organ culture, J. Neurobiol. 11:557–570.

    PubMed  CAS  Google Scholar 

  • Fessard, A., 1958, Les Organes Electrique, in: Traite de Zoology, Vol. XIII (P. P. Grasse, ed.), Masson, Paris, pp. 1143–1238.

    Google Scholar 

  • Frielle, T., Brunner, J., and Curthoys, N. P., 1982, Isolation of the hydrophobic membrane binding domain of rat renal ry-glutamyl transpeptidase selectively labeled with 3-trifluoromethyl-3-(m’25Iiodophenyl)diazirine, J. Biol. Chem. 257:14979–14982.

    PubMed  CAS  Google Scholar 

  • Froede, H. C., and Wilson, I. B., 1971, Acetylcholinesterase, in: The Enzymes, Vol. V, 3rd Ed. (P. D. Boyer, ed.), Academic Press, New York, pp. 87–114.

    Google Scholar 

  • Grassi, J., Vigny, M., and Massoulié, J., 1982, Molecular forms of acetylcholinesterase in bovine caudate nucleus and superior cervical ganglion: Solubility properties and hydrophobic character, J. Neurochem. 38:457–469.

    PubMed  CAS  Google Scholar 

  • Greenspan, R. J., Finn, J. A., Jr., and Hall, J. C., 1980, Acetylcholinesterase mutants in Drosophila and their effects on the structure and function of the central nervous system, J. Comp. Neurol. 189:741–774

    PubMed  CAS  Google Scholar 

  • Grossmann, H., and Liefländer, M., 1975, Affinitätschromatographische reinigung der acetylcholinesterase aus menschlichen erythrozyten, Hoppe-Seyler’s Z. Physiol. Chem. 356:663–669.

    PubMed  CAS  Google Scholar 

  • Guth, L., and Zalewski, A. A., 1963, Disposition of cholinesterase following implantations of nerve into innervated and denervated muscle, Exp. Neurol. 7:316–326.

    PubMed  CAS  Google Scholar 

  • Guth, L., Albers, R. W., and Brown, W. C., 1964, Quantitative changes in cholinesterase activity of denervated muscle fibers and sole plates, Exp. Neurol. 10:236–250.

    PubMed  CAS  Google Scholar 

  • Guth, L., Brown, W. C., and Watson, P. K., 1967, Studies on the role of nerve impulses and acetylcholine release in the regulation of the cholinesterase activity of muscle, Exp. Neurol. 18:443–452.

    PubMed  CAS  Google Scholar 

  • Haas, R., and Rosenberry, T. L., 1984, Identification of the N-terminal amino acid in human erythrocyte acetylcholinesterase by radiolabelled reductive methylaiion and amino acid analysis, submitted for publication.

    Google Scholar 

  • Hall, J. C., and Kankel, D. R., 1976, Genetics of acetylcholinesterase in Drosophila melanogaster, Genetics 83:517–535.

    PubMed  CAS  Google Scholar 

  • Hall, Z. W., 1973, Multiple forms of acetylcholinesterase and their distribution in endplate and non-endplate regions of rat diaphragm muscle, J. Neurobiol. 4:343–361.

    PubMed  CAS  Google Scholar 

  • Hall, Z. W., and Kelly, R., 1971, Enzymatic detachment of endplate acetylcholinesterase from muscle, Nature New Biol. 232:62–63.

    PubMed  CAS  Google Scholar 

  • Inestrosa, N. C., Reiness, C. G., Reichardt, L. F., and Hall, Z. W., 1981, Cellular localization of the molecular forms of acetylcholinesterase in rat pheochromocytoma PC12 cells treated with nerve growth factor, J. Neurosci. 1:1260–1267.

    PubMed  CAS  Google Scholar 

  • Inestrosa, N. C., Silberstein, L., and Hall, Z. W., 1982, Association of the synaptic form of acetylcholinesterase with extracellular matrix in cultured mouse muscle cells, Cell 29:71–79.

    PubMed  CAS  Google Scholar 

  • Kanwar, Y. S., Hascall, V. C., and Farquhar, M. G., 1981, Partial characterization of newly synthesized proteoglycans isolated from the glomerular basement membrane, J. Cell Biol. 90:527–532

    PubMed  CAS  Google Scholar 

  • Kefalides, N. A., Alper, R., and Clark, C. C., 1979, Biochemistry and metabolism of basement membranes, Int. Rev. Cytol. 61:167–228.

    PubMed  CAS  Google Scholar 

  • Kleinman, H. K., Klebe, R. J., and Martin, G. R., 1981, Role of collagenous matrices in the adhesion and growth of cells, J. Cell Biol. 88:473–485.

    PubMed  CAS  Google Scholar 

  • Koenig, J., and Vigny, M., 1978, Neural induction of the 16S acetylcholinesterase in muscle cell cultures, Nature (London) 271:75–77.

    CAS  Google Scholar 

  • Lazar, M., and Vigny, M., 1980, Modulation of the distribution of acetylcholinesterase molecular forms in a murine neuroblastoma multisympathetic ganglion cell hybrid cell line, J. Neurochem. 35:1067–1079.

    PubMed  CAS  Google Scholar 

  • Lazar, M., Salmeron, E., Vigny, M., and Massoulié, J., 1984, Heavy isotope-labeling study of the metabolism of monomeric and tetrameric acetylcholinesterase forms in the murine neuronal-like T28 hybrid cell line, J. Biol. Chem. 259:3703–3713.

    PubMed  CAS  Google Scholar 

  • Lee, S. L., and Taylor, P., 1982, Structural characterization of the asymmetric (17 + 13) S species of acetylcholinesterase from Torpedo. II. Component peptides obtained by selective proteolysis and disulfide bond reduction, J. Biol. Chem. 257:12292–12301.

    PubMed  CAS  Google Scholar 

  • Lee, S. L., Heinemann, S., and Taylor, P., 1982a, Structural characterization of the asymmetric (17 + 13) S forms of acetylcholinesterase from Torpedo. I. Analysis of subunit composition, J. Biol. Chem. 257:12283–12291.

    CAS  Google Scholar 

  • Lee, S. L., Camp, S. J., and Taylor, P., 1982b, Characterization of a hydrophobic, dimeric form of acetylcholinesterase from Torpedo,J. Biol. Chem. 257:12302–12309.

    CAS  Google Scholar 

  • Lcmo, T., and Slater, C. R., 1980, Control of junctional acetylcholinesterase by neural and muscular influences in the rat, J. Physiol. (London) 303:191–202.

    Google Scholar 

  • Lwebuga-Mukasa, J. S., Lappi, S., and Taylor, P., 1976, Molecular forms of acetylcholinesterase from Torpedo californica: Their relationship to synaptic membranes, Biochemistry 15:1425–1434

    PubMed  CAS  Google Scholar 

  • Macnair, R. D. C., and Kenny, A. J., 1979, Proteins of the kidney microvillar membrane. The amphipathic form of dipeptidyl peptidase IV, Biochem. J. 179:379–395.

    PubMed  CAS  Google Scholar 

  • Massoulié, J., 1980, The polymorphism of cholinesterases and its physiological significance, Trends Biochem. Sci. 5:160–164.

    Google Scholar 

  • Massoulié, J., and Bon, S., 1982, The molecular forms of cholinesterase and acetyhlcholinesterase in vertebrates, Annu. Rev. Neurosci. 5:57–106.

    PubMed  Google Scholar 

  • Massoulié, J., and Rieger, F., 1969, L’acétylcholinestérase des organes électriques de poissons (torpille et gymnote); complexes membranaires, Eur. J. Biochem. 11:441–455.

    PubMed  Google Scholar 

  • Massoulié, J., Rieger, F., and Bon, S., 1971, Espéces acetylcholinesterasiques globulaires et allongées des organes électriques de poisson, Eur. J. Biochem. 21:542–551.

    PubMed  Google Scholar 

  • Mays, C., and Rosenberry, T. L., 1981, Characterization of pepsin-resistant collagen-like tail subunit fragments of 18S and 14S acetylcholinesterase from Electrophorus electricus,Biochemistry 20:2810–2817.

    PubMed  CAS  Google Scholar 

  • McCann, W. F. X., and Rosenberry, T. L., 1977, Identification of discrete disulfide-linked oligomers which distinguish 18S from 14S acetylcholinesterase, Arch. Biochem. Biophys. 183:347–352.

    PubMed  CAS  Google Scholar 

  • McLaughlin, J., and Bosmann, H. B., 1976, Molecular species of acetylcholinesterase in denervated rat skeletal muscle, Exp. Neurol. 52:263–271.

    PubMed  CAS  Google Scholar 

  • McMahan, U. J., Sanes, J. R., and Marshall, L. M., 1978, Cholinesterase is associated with the basal lamina at the neuromuscular junction, Nature (London) 271:172–174.

    CAS  Google Scholar 

  • Miledi, R., and Slater, C. R., 1970, On the degeneration of rat neuromuscular junctions after nerve section, J. Physiol. (London) 201:507–526.

    Google Scholar 

  • Millar, D. B., and Grafius, M. A., 1965, Reversible aggregation of acetylcholinesterase, Biochim. Biophys. Acta 110:540–547.

    Google Scholar 

  • Millar, D. B., Christopher, J. P., and Burrough, D. O., 1978, Evidence that eel acetylcholinesterase is not an integral membrane protein, Biophys. Chem. 9:9–14.

    PubMed  CAS  Google Scholar 

  • Nachmansohn, D., 1959, Chemical and Molecular Basis of Nerve Activity, Academic Press, New York (revised edition with E. Neumann, 1975).

    Google Scholar 

  • Nachmansohn, D., and Lederer, E., 1939, Sur la biochemie de la cholinesterase. I. Preparation de l’enzyme: Groupements-SH, Bull. Soc. Chim. Biol. (Paris) 21:797–808.

    CAS  Google Scholar 

  • Niday, E., Wang, C. S., and Alaupovic, P., 1977, Studies on the characterization of human erythrocyte acetylcholinesterase and its interaction with antibodies, Biochim. Biophys. Acta 469:180–193.

    PubMed  CAS  Google Scholar 

  • Olsen, B. R., Alper, R., and Kefalides, N. A., 1973, Structural characterization of a soluble fraction from lens-capsule basement membrane, Eur. J. Biochem. 38:220–228.

    PubMed  CAS  Google Scholar 

  • Ott, P., and Brodbeck, U., 1978, Multiple molecular forms of acetylcholinesterase from human erythrocyte membranes, Eur. J. Biochem. 88:119–125.

    PubMed  CAS  Google Scholar 

  • Ott, P., Jenny, B., and Brodbeck, U., 1975, Multiple molecular forms of purified human erythrocyte acetylcholinesterase, Eur. J. Biochem. 57:469–480.

    PubMed  CAS  Google Scholar 

  • Ott, P., Lustig, A., Brodbeck, U., and Rosenbusch, J. P., 1982, Acetylcholinesterase from human erythrocyte membranes: Dimers as functional units, FEBS Lett. 138:187–189.

    PubMed  CAS  Google Scholar 

  • Rieger, F., Bon, S., and Massoulié, J., 1973, Observation par microscopie électronique des formes allongées et globulaires de l’acétylcholinestérase de gymnote (Electrophorus electricus), Eur. J. Biochem. 34:539–547.

    PubMed  CAS  Google Scholar 

  • Rieger, F., Favre-Bauman, A., Benda, P., and Vigny, M., 1976, Molecular forms of acetylcholinesterase: Their de novo synthesis in mouse neuroblastoma cells, J. Neurochem. 27:1059–1063.

    PubMed  CAS  Google Scholar 

  • Rieger, F., Koenig, J., and Vigny, M., 1980, Spontaneous contractile activity and the presence of the 16 S form of acetylcholinesterase in rat muscle cells in culture: Reversible suppressive action of tetro-dotoxin, Dev. Biol. 76:358–365.

    PubMed  CAS  Google Scholar 

  • Rodriguez-Borrajo, C., Barat, A., and Ramirez, G., 1982, Solubilization of collagen-tailed molecular forms of acetylcholinesterase from several brain areas in different vertebrate species, Neurochem. Int. 4:563–568.

    PubMed  CAS  Google Scholar 

  • Rogers, J., Choi, E., Souza, L., Carter, C., Word, C., Keuhl, M., Eisenberg, D., and Wall, R., 1981, Gene segments encoding transmembrane carboxyl termini of immunoglobulin gamma chains, Cell 26:19–27.

    PubMed  CAS  Google Scholar 

  • Rosenberry, T. L., 1975, Acetylcholinesterase, Adv. Enzymol. 43:103–218.

    PubMed  CAS  Google Scholar 

  • Rosenberry, T. L., 1976, Acetylcholinesterase, in: The Enzymes of Biological Membranes, Vol. 4 (A. Martonosi, ed.), Plenum Press, New York, pp. 331–363.

    Google Scholar 

  • Rosenberry, T. L., 1979, Quantitative simulation of endplate currents at neuromuscular junctions based on the reaction of acetylcholine with acetylcholine receptor and acetylcholinesterase, Biophys. J. 26:263–290

    PubMed  CAS  Google Scholar 

  • Rosenberry, T. L., 1982, Acetylcholinesterase: The relationship of protein structure to cellular localization, in: Membranes and Transport, Vol. 2 (A. Martonosi, ed.), Plenum Press, New York, pp. 339–348

    Google Scholar 

  • Rosenberry, T. L., and Richardson, J. M., 1977, Structure of 18S and 14S acetylcholinesterase. Identification of collagen-like subunits that are linked by disulfide bonds to catalytic subunits, Biochemistry 16:3550–3558

    PubMed  CAS  Google Scholar 

  • Rosenberry, T. L., and Scoggin, D. M., 1984, Structure of human erythrocyte acetylcholinesterase. Char-acterization of intersubunit disulfide bonding and detergent interaction, J. Biol. Chem. 259:5643–5660

    PubMed  CAS  Google Scholar 

  • Rosenberry, T. L., Chen, Y. T., and Bock, E., 1974, Structure of 11 S acetylcholinesterase: Subunit composition, Biochemistry 13:3068–3079.

    PubMed  CAS  Google Scholar 

  • Rosenberry, T. L., Barnett, P., and Mays, C., 1980, The collagen-like subunits of acetylcholinesterase from the eel Electrophorus electricus,Neurochem. Int. 2:135–147.

    CAS  Google Scholar 

  • Rosenberry, T. L., Barnett, P. and Mays, C., 1982, Acetylcholinesterase, Meth. Enzymol. 82:325–339

    PubMed  CAS  Google Scholar 

  • Rotundo, R. L., 1984, Purification and properties of the hydrophobic, membrane-bound form of acetyl-cholinesterase from chicken brain, J. Biol. Chem. (in press).

    Google Scholar 

  • Rotundo, R. L., and Fambrough, D. M., 1979, Molecular forms of chicken embryo acetylcholinesterase in vitro and in vivo, J. Biol. Chem. 254:4790–4799.

    PubMed  CAS  Google Scholar 

  • Rotundo, R. L., and Fambrough, D. M., 1980, Synthesis, transport and fate of acetylcholinesterase in cultured chick embryo muscle cells, Cell 22:583–594.

    PubMed  CAS  Google Scholar 

  • Ruben, L. L., Schuetze, S. M., and Fischbach, G. D., 1979, Accumulation of acetylcholinesterase at newly formed nerve-muscle synapses, Dev. Biol. 69:46–58.

    Google Scholar 

  • Silman, L., Lyles, J. M., and Barnard, E. A., 1979, Intrinsic forms of acetylcholinesterase in skeletal muscle, FEBS Lett. 94:166–170.

    Google Scholar 

  • Skau, K. A., and Brimijoin, S., 1980, Multiple molecular forms of acetylcholinesterase in rat vagus nerve, smooth muscle, and heart, J. Neurochem. 35:1151–1154.

    PubMed  CAS  Google Scholar 

  • Sketelj, J., and Brzin, M., 1979, Attachment of acetylcholinesterase to structures of the motor endplate, Histochemistry 61:239–248.

    PubMed  CAS  Google Scholar 

  • Sketelj, J., McNamee, M. G., and Wilson, B. W., 1978, Effect of denervation on the molecular forms of acetylcholinesterase in normal and dystrophic chicken muscles, Exp. Neurol. 60:624–629.

    PubMed  CAS  Google Scholar 

  • Steck, T. L., 1974, The organization of proteins in the human red blood cell membrane, J. Cell Biol. 62:1–19.

    PubMed  CAS  Google Scholar 

  • Taylor, P., Rieger, F., Shelanski, M. L., and Green, L. A., 1981, Cellular localization of the multiple molecular forms of acetylcholinesterase in cultured neuronal cells, J. Biol. Chem. 256:3827–3830

    PubMed  CAS  Google Scholar 

  • Vigny, M., Koenig, J., and Rieger, F., 1976, The motor end-plate specific form of acetylcholinesterase: Appearance during embryogenesis and re-innervation of rat muscle, J. Neurochem. 27:1347–1353.

    PubMed  CAS  Google Scholar 

  • Vigny, M., Bon, S., Massoulié, J., and Leterrier, F., 1978, Active-site catalytic efficiency of acetylcholinesterase molecular forms in Electrophorus,Torpedo, rat and chicken, Eur. J. Biochem. 85:317–323.

    PubMed  CAS  Google Scholar 

  • Vigny, M., Bon, S., Massonlie, J., and Gisiger, V., 1979, The subunit structure of mammalian acetyl-cholinesterase: Catalytic subunits, dissociating effect of proteolysis and disulphide reduction on the polymeric forms, J. Neurochem. 33:559–565.

    PubMed  CAS  Google Scholar 

  • Vigny, M., Martin, G. R., and Grotendorst, G. R., 1983, Interactions of asymmetric forms of acetylcholinesterase with basement membrane components, J. Biol. Chem. 258:8795–8798.

    Google Scholar 

  • Viratelle, O. M., and Bernhard, S. A., 1980, Major component of acetylcholinesterase in Torpedo electroplax is not basal lamina associated, Biochemistry 19:4999–5007.

    PubMed  CAS  Google Scholar 

  • Weinberg, C. B., and Hall, Z. W., 1979, Junctional form of acetylcholinesterase restored at nerve-free endplates, Dey. Biol. 68:631–635.

    CAS  Google Scholar 

  • Wiedmer, T., DiFrancesco, C., and Brodbeck, U., 1979, Effects of amphiphiles on structure and activity of human erythrocyte membrane acetylcholinesterase, Eur. J. Biochem. 102:59–64.

    PubMed  CAS  Google Scholar 

  • Younkin, S. G., 1981, Turnover of acetylcholinesterase in innervated and denervated rat diaphragm, 11th Neuroscience Meeting, Soc. Neurosci., Vol. 7, Abst. 249.12, p. 766.

    Google Scholar 

  • Younkin, S. G., Rosenstein, C. C., Collins, P. L., and Rosenberry, T. L., 1982, Cellular localization of the molecular forms of acetylcholinesterase in rat diaphragm, J. Biol. Chem. 257:13630–13637

    PubMed  CAS  Google Scholar 

  • Zingde, S., Rodrigues, V., Joshi, S. M., and Krishnan, K. S., 1983, Molecular properties of Drosophila acetylcholinesterase, J. Neurochem. 41:1243–1252.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Rosenberry, T.L. (1985). Structural Distinctions among Acetylcholinesterase Forms. In: Martonosi, A.N. (eds) The Enzymes of Biological Membranes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4601-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4601-2_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4603-6

  • Online ISBN: 978-1-4684-4601-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics