Skip to main content

Dye Probes of Cell, Organelle, and Vesicle Membrane Potentials

  • Chapter
The Enzymes of Biological Membranes

Abstract

The membrane potential is an important property of almost all cells and organelles. Three methods are commonly used to determine membrane potentials. Microelectrodes are used if the cells are large enough. The distribution of radioactive permeant ions between the medium and the cells can yield an estimate of membrane potential. Measurements of the fluorescence or light absorption of certain dye molecules associated with cells, organelles, or vesicles will often provide this information. This brief review covers what is known about the mechanisms of potential-sensitive dyes, their advantages and disadvantages, and examples of how they have been used in the past three years. Reviews of the earlier literature are available (Cohen and Hoffman, 1982; Freedman and Laris, 1981; Waggoner, 1979).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Åkerman, K. E. O., and Järvisalo, J. O., 1980, Effects of ionophores and metabolic inhibitors on the mitochondrial membrane potential within isolated hepatocytes as measured with the safranine method, Biochem. J. 192:183–190.

    PubMed  Google Scholar 

  • Armitage, J. P., and Evans, M. C. W., 1981, Comparison of the carotenoid bandshift and oxanol dyes to measure membrane potential changes during chemotactic stimulation of Rhodopseudomonas sphaeroides and Escherichia coli, FEBS Lett. 126(1):98–102.

    PubMed  CAS  Google Scholar 

  • Baba, A., and Cooper, J. R., 1979, The action of black widow spider venom on cholinergic mechanisms in synaptosomes, J. Neurochem. 34(6): 1369–1379.

    Google Scholar 

  • Bartschat, D. K., Cyr, D. L., and Lindenmayer, G. E., 1980, Depolarization-induced calcium uptake vesicles in a highly enriched sarcolemma preparation from canine ventricle, Biol. Abst. 71(7):4564.

    Google Scholar 

  • Bashford, C. L., Chance, B., Smith, J. C., and Yoshida, T., 1979, The behavior of oxonol dyes in phospholipid dispersions, Biophys. J. 25:63–85.

    PubMed  CAS  Google Scholar 

  • Bayer, M. E., and Bayer, M. H., 1981, Fast responses of bacterial membranes to virus adsorption; a fluorescence study, Proc. Natl. Acad. Sci. USA 78:5618–5622.

    PubMed  CAS  Google Scholar 

  • Baylor, S. M., Chandler, W. K., and Marshall, M. W., 1981, Studies in skeletal muscle using optical probes of membrane potential, in: The Regulation of Muscle Contraction: Excitation-Contraction Coupling (A. Grinnel, ed.), Academic Press, New York, pp. 97–127.

    Google Scholar 

  • Beeler, T. J., 1980, Ca2+ uptake and membrane potential in sarcoplasmic reticulum vesicles, J. Biol. Chem. 255(19):9156–9161.

    PubMed  CAS  Google Scholar 

  • Beeler, T. J., Barmen, R. H., and Martonosi, A. N., 1981, The mechanism of voltage-sensitive dye responses on sarcoplasmic reticulum, J. Membr. Biol. 62:113–137.

    PubMed  CAS  Google Scholar 

  • Bennett, A. B., and Spanswick, R. M., 1983, Optical measurements of ΔpH and ΔΨ in corn root membrane vesicles: Kinetic analysis of Cl effects on a proton-translocating ATPase, J. Membr. Biol. 71:95–107.

    CAS  Google Scholar 

  • Bennett, N., Michel-Villaz, M., and Dupont, Y., 1980, Cyanine dye measurement of light-induced transient membrane potential associated with metarhodopsin II intermediate in rod-outer-segment membranes, Eur. J. Biochem. 111:105–110.

    PubMed  CAS  Google Scholar 

  • Bernal, S. D., Shapiro, H. M., and Chen, I. B., 1982a, Monitoring the effect of anti-cancer drugs on L1210 cells by a mitochondrial probe, rhodamine-123, Int. J. Cancer 30:219–224.

    PubMed  CAS  Google Scholar 

  • Bernal, S. D., Lampidis, J., Summerhayes, C., and Chen, I. B., 1982b, Rhodamine-123 selectively reduces clonal growth of carcinoma cells in vitro, Science 218:1117–1118.

    PubMed  CAS  Google Scholar 

  • Cohen, H. J., Newburger, P. E., Chovaniec, M. E., Whitin, J. C., and Simons, E. K., 1981, Opsonized zymosan-stimulated granulocytes—activation and activity of the superoxide-generating system and membrane potential changes, Blood 58(5):975.

    PubMed  CAS  Google Scholar 

  • Cohen, L. B., and Hoffman, J. F., 1982, Optical measurements of membrane potential, in: Techniques in Cellular Physiology, Vol. 118, Amsterdam Elsevier/North Holland, pp. 1–13.

    Google Scholar 

  • Cohen, R. L., Muirhead, K. A., Gill, J. E., Waggoner, A. S., and Horan, P. K., 1981, A cyanine dye distinguishes between cycling and non-cycling fibroblasts, Nature 290:593–595.

    PubMed  CAS  Google Scholar 

  • Collins, J. M., and Foster, K. A., 1983, Differentiation of promyelocytic (HL-60) cells into mature granulocytes: Mitochondrial-specific rhodamine 123 fluorescence, J. Cell Biol. 96:94–99.

    PubMed  CAS  Google Scholar 

  • Conover, T. E., and Schneider, R. F., 1981, Interaction of certain cationic dyes with the respiratory chain of rat liver mitochondria, J. Biol. Chem. 256(1):402–408.

    PubMed  CAS  Google Scholar 

  • Darzynkiewicz, Z., Staiano-Coico, L., and Melamed, M. R., 1981, Increased mitochondrial uptake of rhodamine 123 during lymphocyte stimulation, Proc. Natl. Acad. Sci. USA 78(4):2383–2387.

    PubMed  CAS  Google Scholar 

  • Darzynkiewicz, Z., Tranganos, F., Staiano-Coico, L., Kapuscinski, J., and Melamed, M. R., 1982, Interactions of rhodamine 123 with living cells studied by flow cytometry, Cancer Res. 42:799–806.

    PubMed  CAS  Google Scholar 

  • Dillon, S., and Morad, M., 1981, A new laser scanning system for measuring action potential propagation in the heart, Science 214:453–456.

    PubMed  CAS  Google Scholar 

  • Dragsten, P. R., and Webb, W. W., 1978, Mechanism of the membrane potential sensitivity of the fluorescent membrane probe merocyanine 540, Biochemistry 17:5228–5240.

    PubMed  CAS  Google Scholar 

  • Freedman, J. C., and Hoffman, J. F., 1979, The relation between dicarbocyanine dye fluorescence and the membrane potential of human red blood cells set at varying Donnan equilibria, J. Gen. Physiol. 74:187–212.

    PubMed  CAS  Google Scholar 

  • Freedman, J. C., and Laris, P. C., 1981, Electrophysiology of cells and organelles: Studies with optical Potentiometric indicators, Int. Rev. Cytol. Suppl. 12:177–246.

    PubMed  CAS  Google Scholar 

  • Freedman, J. C., and Novak, T. S., 1983, Membrane potentials associated with Ca-induced K conductance in human red blood cells: Studies with a fluorescent oxonol dye, WW781, J. Membr. Biol. 72:59–74.

    PubMed  CAS  Google Scholar 

  • Friedman, J. E., Lelkes, P. I., Rosenheck, K., and Oplatka, A., 1980, The possible implication of membrane-associated actin in stimulus-secretion coupling in adrenal chromaffin cells, Biochem. Biophys. Res. Commun. 96(4): 1717–1723.

    PubMed  CAS  Google Scholar 

  • Fujii, S., Hirota, A., and Kamino, K., 1980, Optical signals from early embryonic chick heart stained with potential sensitive dyes: Evidence for electrical activity, J. Physiol. 304:503–518.

    PubMed  CAS  Google Scholar 

  • Fujii, S., Hirota, A., and Kamino, K., 1981a, Optical recording of development of electrical activity in embryonic chick heart during early phases of cardiogenesis, J. Physiol. 311:147–160.

    PubMed  CAS  Google Scholar 

  • Fujii, S., Hirota, A., and Kamino, K., 1981b, Optical indications of pace-maker potential and rhythm generation in early embryonic chick heart, J. Physiol. 312:253–263.

    PubMed  CAS  Google Scholar 

  • Goldstein, S., and Korczack, L. B., 1981, Status of mitochondria in living human fibroblasts during growth and senescence in vitro: Use of the laser dye rhodamine 123, J. Cell Biol. 91:392–398.

    PubMed  CAS  Google Scholar 

  • Graves, C., and Sachs, G., 1982, Quantitation of corneal endothelial potentials using a carbocyanine dye, Biochim. Biophys. Acta 685:27–31.

    PubMed  CAS  Google Scholar 

  • Grinvald, A., and Färber, I. C., 1981, Optical recording of calcium action potentials from growth cones of cultured neurons with a laser microbeam, Science 212:1164–1167.

    PubMed  CAS  Google Scholar 

  • Grinvald, A., Cohen, L. B., Lesher, S., and Boyle, M. B., 1981a, Simultaneous optical monitoring of activity of many neurons in invertebrate ganglia using a 124-element photodiode array, J. Neurophysiol. 45:829–840.

    PubMed  CAS  Google Scholar 

  • Grinvald, A., Ross, W. N., and Färber, I., 1981b, Simultaneous optical measurements of electrical activity from multiple sites on processes of cultured neurons, Proc. Natl. Acad. Sci. USA 78(5):3245–3249.

    PubMed  CAS  Google Scholar 

  • Grinvald, A., Hildesheim, R., Färber, I. C., and Anglister, L., 1982a, Improved fluorescent probes for the measurement of rapid changes in membrane potential, Biophys. J., 39:301–308.

    PubMed  CAS  Google Scholar 

  • Grinvald, A., Manker, A., and Segal, M., 1982b, Visualization of the spread of electrical activity in rat hippocampal slices by voltage-sensitive optical probes, J. Physiol. 333:269–291.

    PubMed  CAS  Google Scholar 

  • Grinvald, A., Fine, A., Farber, I. C., and Hildesheim, R., 1983, Fluorescence monitoring of electrical responses from small neurons and their processes, Biophys. J. 42:195–198.

    PubMed  CAS  Google Scholar 

  • Guillet, E. G., and Kimmich, G. A., 1981, DiO-C3-(5) and DiS-C3-(5): Interactions with RBC, ghosts and phospholipid vesicles, J. Membr. Biol. 59:1–11.

    PubMed  CAS  Google Scholar 

  • Gupta, R. K., Salzberg, B. M., Grinvald, A., Cohen, L. B., Kamino, K., Lesher, S., Boyle, M. B., Waggoner, A. S., and Wang, C. H., 1981, Improvements in optical methods for measuring rapid changes in membrane potential, J. Membr. Biol. 58:1–15.

    Google Scholar 

  • Hacking, C., and Eddy, A. A., 1981, The accumulation of amino acids by mouse ascites-tumour cells, Biochem. J. 194:415–426.

    PubMed  CAS  Google Scholar 

  • Haeyaert, P., Verdonck, F., and Wuytack, F., 1980, Fluorescence changes of the potential-sensitive merocyanine 540 during Ca transport in sarcoplasmic reticulum, Arch. Int. Pharmacodyn. Ther. 244(2):333.

    PubMed  CAS  Google Scholar 

  • Heiny, J. A., and Vergara, J., 1982, Optical signals from surface and T system membranes in skeletal muscle fibers, J. Gen. Physiol. 80:203–230.

    PubMed  CAS  Google Scholar 

  • Hill, B. C., and Courtney, K. R., 1982, Voltage-sensitive dyes, Biophys. J. 40:255–257.

    PubMed  Google Scholar 

  • Horne, W. C., and Simons, E. R., 1978, Probes of transmembrane potentials in platelets: Changes in cyanine dye fluorescence in response to aggregation stimuli, Blood 51(4):741–749.

    PubMed  CAS  Google Scholar 

  • Horne, W. C., Norman, N. E., Schwartz, D. B., and Simons, E. R., 1981, Changes in cytoplasmic pH and in membrane potential in thrombin-stimulated human platelets, Eur. J. Biochem. 120:295–302.

    PubMed  CAS  Google Scholar 

  • Howard, P. H., Jr., and Wilson, S. B., 1979, Effects of the cyanine dye 3,3′-dipropylthiocarbocyanine on mitochondrial energy conservation, Biochem. J. 180:669–672.

    PubMed  CAS  Google Scholar 

  • James, T. W., and Bohman, R., 1981, Proliferation of mitochondria during the cell cycle of the human cell line (HL-60), J. Cell Biol. 89:256–260.

    PubMed  CAS  Google Scholar 

  • Johnson, L. V., Walsh, M. L., and Chen, L. B., 1980, Localization of mitochondria in living cells with rhodamine 123, Proc. Natl. Acad. Sci. USA 77(2):990–994.

    PubMed  CAS  Google Scholar 

  • Johnson, L. V., Walsh, M. L., Bockus, B. J., and Chen, L. B., 1981, Monitoring of relative mitochondrial membrane potential in living cells by fluorescence microscopy, J. Cell Biol. 88:526–535.

    PubMed  CAS  Google Scholar 

  • Johnson, L. V., Summerhayes, I. C., and Chen, L. B., 1982, Decreased uptake and retention of rhodamine 123 by mitochondria in feline sercoma virus-transformed mink cells, Cell 28:7–14.

    PubMed  CAS  Google Scholar 

  • Johnstone, R. M., Laris, P. C., and Eddy, A. A., 1982, The use of fluorescent dyes to measure membrane potentials: A critique, J. Cellular Physiol. 112:298–301.

    CAS  Google Scholar 

  • Juretić, D., and Kotnik-Karuza, D., 1981, The fluorescent probe for the membrane potential of red blood cells, Period. Biol. 83(1):156–158.

    Google Scholar 

  • Kamino, K., Hirota, A., and Fujii, S., 1981, Localization of pace-making activity in early embryonic heart monitored using voltage-sensitive dye, Nature 290:595–597.

    PubMed  CAS  Google Scholar 

  • Kiehl, R., and Hanstein, W. G., 1981, Oxonol response and energy transduction in an ATP-Pi exchange complex, in: Vectorial Reactions in Electron and Ion Transport in Mitochondria and Bacteria (F. Palmieri, E. Quagliariello, N. Siliprandi, and E. C. Slater, eds.), Elsevier/North-Holland Biomedical Press, Amsterdam, pp. 217–222.

    Google Scholar 

  • Kinnally, K. W., and Tedeschi, H., 1978, Metabolic effects of some electrofluorimetric dyes, Biochim. Biophys. Acta 503:380–388.

    PubMed  CAS  Google Scholar 

  • Kondo, K., Shimizu, T., and Hayaishi, O., 1981, Effects of Prostaglandin D2 on membrane potential in neuroblastoma X glioma hybrid cells as determined with a cyanine dye, Biochem. Biophys. Res. Commun. 98(3):648–655.

    PubMed  CAS  Google Scholar 

  • Korchak, H. M., Rich, A. M., Wilkenfeld, C., Rutherford, L. E., and Weissmann, G., 1982, A carbocyanine dye, diOC6(3), acts as a mitochondrial probe in human neutrophils, Biochem. Biophys. Res. Commun. 108(4): 1495–1501.

    PubMed  CAS  Google Scholar 

  • Kováč, L., and Poliachová, V., 1981, Membrane potential monitoring cyanine dyes uncouple respiration and induce respiration-deficient mutants in intact yeast cells, Biochem. Int. 2(5):503–507.

    Google Scholar 

  • Kováč, L., and Varečka, L., 1981, Membrane potentials in respiring and respiration-deficient yeasts monitored by a fluorescent dye, Biochim. Biophys. Acta 637:209–216.

    PubMed  Google Scholar 

  • Krasne, S., 1980a, Interactions of voltage-sensing dyes with membranes. I. Steady-state permeability behaviors induced by cyanine dyes, Biophys. J. 30:415–440.

    PubMed  CAS  Google Scholar 

  • Krasne, S., 1980b, Interactions of voltage-sensing dyes with membranes. II. Spectrophotometric and electric correlates of cyanine-dye adsorption to membranes, Biophys. J. 30:441–462.

    PubMed  CAS  Google Scholar 

  • Labedan, B., and Letellier, L., 1981, Membrane potential changes during the first steps of coliphage infection, Proc. Natl. Acad. Sci. USA 78:215–219.

    PubMed  CAS  Google Scholar 

  • Lampidis, T. J., Bemal, S. D., Summerhayes, I. C., and Chen, L. B., 1982, Rhodamine-123 is selectively toxic and preferentially retained in carcinoma cells in vitro, Ann. N.Y. Acad. Sci. 397:299–302.

    CAS  Google Scholar 

  • Larsen, N. E., and Simons, E. R., 1981, Preparation and application of a photoreactive thrombin analogue: Binding to human platelets, Biochemistry 20:4141–4147.

    PubMed  CAS  Google Scholar 

  • Laszlo, D. J., and Taylor, B. L., 1981, Aerotaxis in Salmonella typhimurium: Role of electron transport, J. Bacteriol. 145(2):990–1001.

    PubMed  CAS  Google Scholar 

  • Lavie, E., and Sonenberg, M., 1980, Spectroscopic evidence for interactions of merocyanine 540 with valinomycin in the presence of potassium, FEBS Lett. 111(2):281–284.

    PubMed  CAS  Google Scholar 

  • Lelkes, P. I., Naquira, D., Friedman, J. E., Rosenheck, K., and Schneider, A. S., 1982, Plasma membrane vesicles from bovine adrenal chromaffin cells: Characterization and fusion with chromaffin granules, Adv. Biosci. 36:143–150.

    CAS  Google Scholar 

  • Letellier, L., and Shechter, E., 1979, Cyanine dye as monitor of membrane potentials in Escherichia coli cells and membrane vesicles, J. Biochem. 102:441–447.

    CAS  Google Scholar 

  • Loew, L. M., 1982, Design and characterization of electrochromic membrane probes. J. Biochem. Biophys. Meth. 6:243–260.

    PubMed  CAS  Google Scholar 

  • Loew, L. M., and Simpson, L. L., 1981, Charge shift probes of membrane potential. A probable electrochromic mechanism for ASP probes on a hemispherical lipid bilayer, Biophys. J. 34:353–365.

    PubMed  CAS  Google Scholar 

  • Meissner, G., 1981, Calcium transport and monovalent cation and proton fluxes in sarcoplasmic reticulum vesicles, J. Biol. Chem. 256(2):636–643.

    PubMed  CAS  Google Scholar 

  • Meissner, G., and Allen, R., 1981, Evidence for two types of rat liver microsomes with differing permeability to glucose and other small molecules, J. Biol. Chem. 256(12):6413–6422.

    PubMed  CAS  Google Scholar 

  • Meissner, G., and Young, R. C., 1980, Proton permeability of sarcoplasmic reticulum vesicles, J. Biol. Chem. 255(14):6814–6819.

    PubMed  CAS  Google Scholar 

  • Milligan, G., and Strange, P. G., 1982, The use of biochemical methods for estimating membrane potential, Prog. Brain Res. 55:321–329.

    PubMed  CAS  Google Scholar 

  • Morita, T., Mori, M., Ikeda, F., and Tatibana, M., 1982, Transport of carbamyl phosphate synthetase I and Ornithine transcarbamylase into mitochondria, J. Biol. Chem. 257(18): 10547–10550.

    PubMed  CAS  Google Scholar 

  • Nakajima, S., and Gilai, A., 1980a, Action potentials of isolated single muscle fibers recorded by potential-sensitive dyes, J. Gen. Physiol. 76:729–750.

    PubMed  CAS  Google Scholar 

  • Nakajima, S., and Gilai, A., 1980b, Radial propagation of muscle action potential along the tubular system examined by potential-sensitive dyes, J. Gen. Physiol. 76:751–762.

    PubMed  CAS  Google Scholar 

  • Nordmann, J. J., Desmazes, J. P., and Georgescauld, D., 1982, The relationship between the membrane potential of neurosecretory nerve endings, as measured by a voltage-sensitive dye, and the release of neurohypophysial hormones, Neuroscience 7(3):731–737.

    PubMed  CAS  Google Scholar 

  • Oetliker, H., 1981, Does indodicarbocyanine fluorescence reflect membrane potential of the sarcoplasmic reticulum in skeletal muscle?, Adv. Physiol. Sci. 5:345–361.

    CAS  Google Scholar 

  • Okimasu, E., Akiyama, J., Shiraishi, N., and Utsumi, K., 1979, The mechanism of inhibition on the endogenous respiration of Erlich ascites tumor cells by the cyanine dye disS-C3-(5), Physiol. Chem. Phys. 11:425–433.

    PubMed  CAS  Google Scholar 

  • Orbach, H. S., and Cohen, L. B., 1984, Optical monitoring of activity from many areas of the in vitro and in vivo salamander olfactory bulb: A new method for studying functional organization in the vertebrate CNS, J. Neurosci., in press.

    Google Scholar 

  • Pape, L., 1982, Effect of extracellular Ca2+, K +, and OH on erythrocyte membrane potential as monitored by the fluorescent probe 3-3′-dipropylthiodicarbocyanine, Biochim. Biophys. Acta 686:225–232.

    PubMed  CAS  Google Scholar 

  • Peña, A., Mora, M. A., and Carrasco, N., 1979, Uptake and effects of several cationic dyes on yeast, J. Membr. Biol. 47:261–284.

    Google Scholar 

  • Peña, A., Clemente, S. M., Borbolla, M., Carrasco, N., and Uribe, S., 1980, Multiple interactions of ethidium bromide with yeast cells, Arch. Biochem. Biophys. 201(2):420–428.

    PubMed  Google Scholar 

  • Philo, R. D., and Eddy, A. A., 1978a, The membrane potential of mouse ascites-tumour cells studied with the fluorescent probe 3,3′-dipropyloxadicarbocyanine, Biochem. J. 174:801–810.

    PubMed  CAS  Google Scholar 

  • Philo, R. D., and Eddy, A. A., 1978b, Equilibrium and steady-state models of the coupling between the amino acid gradient and the sodium electrochemical gradient in mouse ascites-tumour cells, Biochem. J. 174:811–817.

    PubMed  CAS  Google Scholar 

  • Rink, T. J., and Hladky, S. B., 1982, Measurement of red cell membrane potential with fluorescent dyes, in: Red Cell Membranes—A Methodological Approach (J. C. Ellory and J. D. Young, eds.), Academic Press, New York, pp. 321–334.

    Google Scholar 

  • Ross, W. N., Salzberg, B. M., Cohen, L. B., Grinvald, A., Davila, H. V., Waggoner, A. S., and Wang, C. H., 1977, Changes in absorption, fluorescence, dichroism, and birefringence in stained giant axons: Optical measurement of membrane potential, J. Membr. Biol. 33:141–183.

    PubMed  CAS  Google Scholar 

  • Salama, G., Johnson, R. G., and Scarpa, A., 1980, Spectrophotometric measurements of transmembrane potential and pH gradients in chromaffin granules, J. Gen. Physiol. 75:109–140.

    PubMed  CAS  Google Scholar 

  • Scherman, D., and Henry, J. P., 1980, Oxonol-V as a probe of chromaffin granule membrane potentials, Biochim. Biophys. Acta 599:150–166.

    PubMed  CAS  Google Scholar 

  • Schiefer, H.-G., and Schummer, U., 1982, The electrochemical potential across mycoplasmal membranes, Rev. Infect. Dis. 4:565.

    Google Scholar 

  • Seligmann, B., and Gallin, J. I., 1980, Secretagogue modulation of the response of human neutrophils to chemoattractants: Studies with a membrane potential sensitive cyanine dye, Mol. Immun. 17:191–200.

    CAS  Google Scholar 

  • Seligmann, B., and Gallin, J. I., 1983, Comparison of indirect probes of membrane potential utilized in studies of human neutrophils, J. Cell. Physiol. 115:105–115.

    PubMed  CAS  Google Scholar 

  • Seligmann, B. E., Gallin, E. K., Martin, D. L., Shain, W., and Gallin, J. I., 1980, Interaction of chemotactic factors with human polymorphonuclear leukocytes: Studies using a membrane potential-sensitive cyanine dye, J. Membr. Biol. 52:257–272.

    PubMed  CAS  Google Scholar 

  • Senseman, D. M., and Salzberg, B. M., 1980, Electrical activity in an exocrine gland: Optical recording with a Potentiometric dye, Science 208:1269–1271.

    PubMed  CAS  Google Scholar 

  • Senseman, D. M., Shimizu, H., Horwitz, I. S., and Salzberg, B. M., 1984, Multiple site optical recording of membrane potential from a salivary gland: Interaction of synaptic and electronic excitation, J. Gen. Physiol., in press.

    Google Scholar 

  • Sepersky, S. M. G., and Simons, E. R., 1981, Effect of metabolic inhibitors of thrombin-induced membrane potential changes in washed human platelets, Thromb. Res. 24:299–306.

    PubMed  CAS  Google Scholar 

  • Shapiro, H. M., Natale, P. J., and Kamentsky, L. A., 1979, Estimation of membrane potentials of individual lymphocytes by flow cytometry, Proc. Natl. Acad. Sci. USA 76:(11):5728–5730.

    PubMed  CAS  Google Scholar 

  • Simchowitz, L., Spilberg, I., and DeWeer, P., 1982, Sodium and potassium fluxes and membrane potential of human neutrophils, J. Gen. Physiol. 79:453–479.

    PubMed  CAS  Google Scholar 

  • Sims, P. J., Waggoner, A. S., Wang, C., and Hoffman, J. F., 1974, Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidyl choline vesicles, Biochemistry 23:3315–3330.

    Google Scholar 

  • Sklar, L. A., Jesaitis, A. J., Painter, R. G., and Cochrane, C. G., 1981, The kinetics of neutrophil activation, J. Biol. Chem. 256(19):9909–9914.

    PubMed  CAS  Google Scholar 

  • Smith, J. C., Frank, S. J., Bashford, C. L., Chance, B., and Rudkin, B., 1980, Kinetics of the association of potential-sensitive dyes with model and energy-transducing membranes: Implications for fast probe response times, J. Membr. Biol. 54:127–139.

    PubMed  CAS  Google Scholar 

  • Smith, J. C., Hallidy, L., and Topp, M. R., 1981, The behavior of the fluorescence lifetime and polarization of oxonol potential-sensitive extrinsic probes in solution and in beef heart submitochondrial particles, J. Membr. Biol. 60:173–185.

    PubMed  CAS  Google Scholar 

  • Smith, T. C., 1982, The use of fluorescent dyes to measure membrane potentials: A response, J. Cell. Physiol. 112:302–305.

    PubMed  CAS  Google Scholar 

  • Steensma, H. Y., 1981, Effect of defective phages on the cell membrane of Bacillus subtilis and partial characterization of a phage protein involved in killing, J. Gen. Virol. 56:275–286.

    PubMed  CAS  Google Scholar 

  • Sugiyama, K., and Utsumi, K., 1979, Changes in membrane potential on histamine release from mast cells: Measurement with a fluorescent dye, Cell Struct. Funct. 4:257–260.

    CAS  Google Scholar 

  • Summerhayes, I. C., Lampidis, T. J., Bernal, S. D., Nadakavukaren, J. J., Nadakavukaren, K. K., Shepherd, E. L., and Chen, L. B., 1982, Unusual retention of rhodamine 123 by mitochondria in muscle and carcinoma cells, Proc. Natl. Acad. Sci. USA 79:5292–5296.

    PubMed  CAS  Google Scholar 

  • Tatham, P. E. R., Delves, P. J., Shen, L., and Roitt, I. M., 1980, Chemotactic factor-induced membrane potential changes in rabbit neutrophils monitored by the fluorescent dye 3,3′-dipropylthiadicarbocyanine iodide, Biochim. Biophys. Acta 602:285–298.

    PubMed  CAS  Google Scholar 

  • Terada, H., Nagamune, H., Osaki, Y., and Yoshikawa, K., 1981, Specific requirement for inorganic phosphate for induction of bilayer membrane conductance by the cationic uncoupler carbocyanine dye, Biochim. Biophys. Acta 646:488–490.

    PubMed  CAS  Google Scholar 

  • Vacata, V., Kotyk, A., and Sigler, K., 1980, Membrane potential in yeast cells measured by direct and indirect methods, Biochim. Biophys. Acta 643:265–268.

    Google Scholar 

  • Van den Broek, P. J. A., Christianse, K., and Van Steveninck, J., 1982, The energetics of d-fucose transport in Saccharomyces fragilis. The influence of the protonmotive force on sugar accumulation, Biochim. Biophys. Acta 692:231–237.

    PubMed  Google Scholar 

  • Waggoner, A. S., 1979, Dye indicators of membrane potential, Annu. Rev. Biophys. Bioeng. 8:47–68.

    PubMed  CAS  Google Scholar 

  • Waggoner, A. S., 1982, Optical probes of the potential difference across membranes, in: Membranes and Transport, Vol. 1 (A. N. Martonosi, ed.), Plenum Publishing, New York, pp. 195–201.

    Google Scholar 

  • Waggoner, A. S., Wang, C. H., and Tolles, R. L., 1977, Mechanism of potential-dependent light absorption changes of lipid bilayers in the presence of cyanine and oxonol dyes, J. Membr. Biol., 33:109–140.

    PubMed  CAS  Google Scholar 

  • Whitin, J. C., Clark, R. A., Simons, E. R., and Cohen, H. J., 1981, Effects of the myeloperoxidase system on fluorescent probes of granulocyte membrane potential, J. Biol. Chem., 256:8904–8906.

    PubMed  CAS  Google Scholar 

  • Whitin, J. C., Gordon, R. K., Corwin, L. M., and Simons, E. R., 1982, The effect of vitamin E deficiency on some platelet membrane properties, J. Lipid Res. 23:276–282.

    PubMed  CAS  Google Scholar 

  • Wolniak, S. M., Hepler, P. K., and Jackson, W. T., 1983, Ionic changes in the mitotic apparatus at the metaphase/anaphase transition, J. Cell Biol. 96:598–605.

    PubMed  CAS  Google Scholar 

  • Wright, S. H., Krasne, S., Kippen, I., and Wright, E. M., 1981, Na+-dependent transport of tricarboxylic acid cycle intermediates by renal brush border membranes. Effects on fluorescence of a potential-sensitive cyanine dye, Biochim. Biophys. Acta 640:767–778.

    PubMed  CAS  Google Scholar 

  • Yamamoto, N., and Kasai, M., 1980, Donnan potential in sarcoplasmic reticulum vesicles measured by using a fluorescent cyanine dye, J. Biochem. 88:1425–1435.

    PubMed  CAS  Google Scholar 

  • Young, R. C., Allen, R., and Meissner, G., 1981, Permeability of reconstituted sarcoplasmic reticulum vesicles; Reconstitution of the K+, Na+ channel, Biochim. Biophys. Acta 640:409–418.

    PubMed  CAS  Google Scholar 

  • Zaritsky, A., Kihara, M., and Macnab, R. M., 1981, Measurement of membrane potential in Bacillus subtilis: A comparison of lipophilic cations, rubidium ion, and a cyanine dye as probes, J. Membr. Biol. 63:215–231.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Waggoner, A.S. (1985). Dye Probes of Cell, Organelle, and Vesicle Membrane Potentials. In: Martonosi, A.N. (eds) The Enzymes of Biological Membranes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4598-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4598-5_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4600-5

  • Online ISBN: 978-1-4684-4598-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics