Skip to main content

The Quantum Hall Effect

  • Conference paper
Atomic Physics 8
  • 235 Accesses

Abstract

Basically, the quantum Hall effect (QHE) has nothing to do with atomic physics. Semiconductors are normally used to observe this quantum phenomenon, and the 1023 atoms per cubic centimeter of a semiconductor represent such a complicated system of interacting atoms that its electronic properties are normally described by phenomenological quantities and cannot be deduced from the properties of the isolated atoms. Nevertheless, our measurements on semiconductors demonstrate that the quantity h/e2 (h = Planck constant, e = elementary charge) can be determined with an uncertainty of less than 10−6. Since the fine-structure constant α is directly proportional to e2/h (the proportional constant depends mainly on the well known velocity of light c), one can use the QHE for the determination of α with an uncertainty smaller than that resulting from high-precision measurements of the fine-structure and hyperfine-structure splitting of a hydrogen atom.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.V. Klitzing, 1982, Two-dimensional systems: A method for the determination of the fine-structure constant, Surf.Sci. 113, 1.

    Article  ADS  Google Scholar 

  2. A. Sommerfeld, 1916, Annalen der Physik (Leipzig) 51 1.

    Article  ADS  Google Scholar 

  3. E.R. Cohen and B.N. Taylor, 1973, The 1973 least-square adjustment of the fundamental constants, J.Phys.Chem.Ref. Data 2, 663.

    Google Scholar 

  4. D.A. Andrews and G. Newton, 1976, Radio frequency atomic beam measurement of the Lamb-shift interval in hydrogen, Phys.Rev.Letters 37, 1254.

    Article  ADS  Google Scholar 

  5. S.R. Lundeen and F.M. Pipkin, 1981, Measurement of the Lamb- shift in hydrogen, n = 2, Phys.Rev.Letters 46, 232.

    Article  ADS  Google Scholar 

  6. Yu.L.Sokolov, 1982, Measurement of the Lamb shift in hydrogen, in Proc. of the Second Int.Conf. on Precision Measurements and Fundamental Constants, Eds B.V. Taylor and W.D. Phillips, Nat. Bur. Std. (US), Spec.Publ. 617

    Google Scholar 

  7. S.L. Kaufman, W.E. Lamb, K.R. Lea, and M. Leventhal, 1971, Measurement of the 22S1/2– 22P3/2Intervai Interval in Atomic Hydrogen, Phys. Rev. A 4, 2128.

    Google Scholar 

  8. T.W. Shyn, T. Rebane, R.T. Robiscoe, and W.L. Williams, 1971, Measurement of the 22S1/2– 22P3/2 ener§y separation (ΔE - S) in hydrogen (n = 2), Phys. Rev. A 3, 116.

    Article  Google Scholar 

  9. B.L. Cosens and T.V. Vorburger, 1970, Remeasurement of the 22S1/2– 22P3/2 splitting in atomic hydrogen, Phys. Rev. A 2, 16.

    Google Scholar 

  10. K.A. Safinya, K.K. Chan, S.R. Lundeen, and F.M. Pipkin, 1980, Measurement of the 22S1/2– 22P3/2 fine-structure interval in atomic hydrogen, Phys.Rev.Letters 45, 1934.

    Article  ADS  Google Scholar 

  11. L. Essen, R.W. Donaldson, M.J. Bangham, and E.G. Hope, 1971, Frequency of the hydrogen maser, Nature 229, 110.

    Article  ADS  Google Scholar 

  12. E. de Rafael, 1971, The hydrogen hyperfine structure and inelastic electron-proton scattering experiments, Phys. Lett. 37 B, 201.

    Google Scholar 

  13. V.W. Hughes, 1982, Precision exotic atom spectroscopy, in Proc. of the Second Int.Conf. on Precision Measurements and Fundamental Constants, Eds B.N. Taylor and W.D. Phillips, Natl. Bur. Std. (US), Spec. Publ. 617.

    Google Scholar 

  14. R.S. van Dyck, P.B. Schwinberg, and H.G. Dehmelt, 1979, Progress in the electron spin anomaly experiment, Bull.Am. Phys.Soc. 24, 758.

    Google Scholar 

  15. P.B. Schwinberg, R.S. van Dyck, and H.G. Dehmelt, 1982, Comparison of the positron and electron spin anomalies, in Proc. of the Second Int.Conf. on Precision Measurements and Fundamental Constants, Eds B.N. Taylor and W.D. Phillips, Natl. Bur. Std. (US), Spec. Publ. 617.

    Google Scholar 

  16. T. Kinoshita and W.B. Lindquist, 1981, Eight-order anomalous magnetic moment of the electron, Phys.Rev.Letters, 47, 1573.

    Article  ADS  Google Scholar 

  17. K. v.Klitzing, G. Dorda, and M.Pepper, 1980, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Letters 45, 494.

    Google Scholar 

  18. for a review see: F. Stern, 1974, Quantum properties of surface space-charge layers, Crit.Rev.Solid State Sci. 4, 499.

    Google Scholar 

  19. D.C. Tsui, A.C. Gossard, B.F. Field, M.E. Cage, and R.F. Dziuba, 1982, Determination of the fine-structure constant using GaAs-A1xGA1-xAs heterostructures, Phys.Rev.Letters 48, 3.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this paper

Cite this paper

v. Klitzing, K. (1983). The Quantum Hall Effect. In: Lindgren, I., Rosén, A., Svanberg, S. (eds) Atomic Physics 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4550-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4550-3_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4552-7

  • Online ISBN: 978-1-4684-4550-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics