Skip to main content

Light Scattering as a Probe for Atomic Interactions

  • Conference paper
Book cover Atomic Physics 8
  • 231 Accesses

Abstract

In this talk we should like to describe some recent work on the scattering of light by atomic and molecular collisions.1–8 This work, in our opinion, offers the prospect of a rather direct technique for studying the mechanisms of heavy particle collisions and reactions. We should also like to show that knowledge of such mechanisms, as well as being interesting in its own right, has important consequences for the field of laser assisted and modified collisions. Let us consider to begin with a conventional atomic or molecular crossed beam experiment where, for the sake of discussion, we suppose that we can specify all the relevant ingoing states of the colliding partners: translational and internal energies, spin, etc. Let us suppose that we can also measure all the corresponding quantities for the final or product states. If we have a ground state to ground state scattering problem with a single open channel there are well-established inversion procedures.9 For a multichannel problem, i.e. one where several asymptotic states are accessible, inversion is rarely possible. It may, in some cases, be possible to calculate an “ab initio potential” and do full quantal calculations; more often, however, we are forced to consider models of the interaction between the collision partners and consider which model fits the data best. It would, of course, be most advantageous if we could obtain some information more directly about the collision complex rather than have to be content with asymptotic information which may not tie down the form of the potential very well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Burnett, J. Cooper, R. J. Ballagh and E. W. Smith, Phys. Rev. A 22:2205 (1980); K. Burnett and J. Cooper, Phys. Rev. A 22:2027 (1980); K. Burnett and J. Cooper, Phys. Rev. A 22: 2044 (1980).

    MathSciNet  ADS  Google Scholar 

  2. S. Mukamel, J. Chem. Phys. 71:2884 (1979); Y. Rabin, D. Grimbert and S. Mukamel, Phys. Rev. A 26: 271 (1982).

    Article  ADS  Google Scholar 

  3. G. Nienhuis, Physica 93c:393–407 (1978); J. Phys. B 15: 535–550 (1982).

    MathSciNet  Google Scholar 

  4. P. Thomann, K. Burnett and J. Cooper, Phys. Rev. Lett. 45: 1326 (1980).

    Article  ADS  Google Scholar 

  5. D. Voslamber and J. B. Yelnik, Phys. Rev. Lett. 41: 1233 (1978).

    Article  ADS  Google Scholar 

  6. A. Ben-Reuven and Y. Rabin, Phys. Rev. A 19: 2056 (1979).

    Article  ADS  Google Scholar 

  7. F. H. Mies, Quantum theory of atomic collisions in intense laser fields, in: “Theoretical Chemistry: Advances and Perspectives,” Vol. 8, D. Henderson, ed., Academic Press, New York (1981); T. F. George, J. Phys. Chem. 86:10 (1982).

    Google Scholar 

  8. Kai-shue Lam and T. F. George, J. Chem. Phys. 76:3396 (1982); T. F. George., Theory of molecular rate processes in the presence of intense laser fields, in: Chemical and Bio-chemical Applications of Lasers, Vol. IV, C. B. Moore, ed., Academic Press, New York (1979).

    Google Scholar 

  9. H. Pauly, Elastic scattering cross sections. I: Spherical potentials, in: “Atom-Molecule Collision Theory, A Guide for the Experimentalist,” R. B. Bernstein, ed., Plenum, New York (1980).

    Google Scholar 

  10. R. J. LeRoy, Applications of Bohr quantization in diatomic molecule spectroscopy, in; Semiclassical Methods in Molecular Scattering and Spectroscopy, M. S. Child, ed., N.A.T.O. Advanced Study Institutes Series (Series C), Reidel, New York, (19).

    Google Scholar 

  11. R. E. M. Hedges, D. L. Drummond and A. Gallagher, Phys. Rev. A. 6: 1519 (1972).

    Article  ADS  Google Scholar 

  12. H. G. Kuhn, Phil. Mag. 18:987 (1934); Proc. Roy. Soc. A 158: 212 (1937).

    MATH  Google Scholar 

  13. A. Jablonski, Acta Phys. Polon. 6:371 (1937); 7:196 (1938); Phys. Rev. 68: 78 (1945).

    MATH  Google Scholar 

  14. J. L. Carlsten, A. Szöke and M. G. Raymer, Phys. Rev. A 15: 1029 (1977).

    Article  ADS  Google Scholar 

  15. J. V. McGinley, Thesis, Oxford University (1981).

    Google Scholar 

  16. M. G. Raymer, J. L. Carlsten and G. Pichler, J. Phys. B 12: L119 (1979).

    Article  ADS  Google Scholar 

  17. P. Ewart, A. I. Ferguson S. V. O’Leary, Optics Commun. 40:147 (1981); P. Ewart and S. V. O’Leary (1982), to be published; M. Dagenais, Phys. Rev. A 24:1404 (1981); Y. Prior, A. R. Bogdan, M. Dagenais and N. Bloembergen, Phys. Rev. Lett. 46: 111 (1981).

    Article  ADS  Google Scholar 

  18. J. Cooper, “Why half a collision is better than a whole one,” (Invited talk), in: Sixth International Conference on Spectral Line Shapes, K. Burnett, ed., de Gruyter, Berlin (in press).

    Google Scholar 

  19. P. Julienne, “Non-adiabatic effects in line broadening,” (Invited talk), in: Sixth International Conference on Spectral Line Shapes, K. Burnett, ed., de Gruyter, Berlin (in press).

    Google Scholar 

  20. J. C. White, Opt. Lett. 242 (1981); M. H. Nayfeh and G. B. Hillard, Phys. Rev. A 24:1409 (1981); L. I. Gudzenko and S. I. Yakovlenko, Zh. Eksp. Teor. Fiz. 62:1686 (1972) [Sov. Phys.-JETP 35:877 (1972)]; S. E. Harris., in: “Tunable Lasers and Applications,” S. Mooradian, T. Jaeger and P. Stoketh., Springer, New York (1976), p. 193; S. E. Harris., Laser induced collisional energy transfer, in: Atomic Physics 7, D. Kleppner., Plenum, New York (1981); P. L. deVries, C. Chang, T. F. George, B. Laskowski, J. R. Stallcop, Phys. Rev. A 22:545 (1980).

    Google Scholar 

  21. A. Gallagher, The absorption and emission of radiation by the collision complex, in: “Physics of Electronic and Atomic Collisions,” S. Datz, ed., North Holland, Amsterdam (1982), pp. 403–411.

    Google Scholar 

  22. Y. Rabin and P. Hering, contributed paper European Conference on Atomic Physics, April 6–10, 1981, Ruprecht-Karls- Universität, Heidelberg, EPS Conference Abstracts Volume 5A, Part 11; T. Lukasik and S. C. Wallace, Phys. Rev. Lett. 47: 240 (1981).

    Google Scholar 

  23. P. Arrowsmith, F. E. Bartoszek, S. H. Bly, T. Carrington, Jr., P. E. Charters and J. C. Polanyi, J. Chem. Phys. 73:11,4895 (1980); P. Hering, P. R. Brooks, R. F. Curl, Jr., R. S. Judson and R. S. Lowe, Phys. Rev. Lett. 44: 687 (1980).

    Article  Google Scholar 

  24. K. Burnett, J. Cooper, P. D. Kleiber and A. Ben-Reuven, Phys. Rev. A 25: 1345–1357 (1982).

    Article  ADS  Google Scholar 

  25. Y. Rabin and A. Ben-Reuven, J. Phys. B 13: 2011 (1980).

    Google Scholar 

  26. S. Reynaud and C. C. Cohen-Tannoudji, “Dressed atom approach to collisional redistribution,” J. Physique (in press).

    Google Scholar 

  27. P. D. Kleiber, J. Cooper, K. Burnett, C. V. Kunasz and M. G. Raymer, “Theory of time dependent intense field collisional fluorescence,” Phys. Rev. A (submitted).

    Google Scholar 

  28. P. D. Kleiber, K. Burnett and J. Cooper, Phys. Rev. Lett. 47: 22, 1595 (1981).

    Article  ADS  Google Scholar 

  29. J. C. Light and A. SzSke, Phys. Rev. A 1363 (1978).

    Google Scholar 

  30. J. Szudy and W. E. Baylis, J. Quant. Spectrosc. Radiat. Transfer 15: 641 (1975).

    Article  ADS  Google Scholar 

  31. A. M. Bonch-Bruevich, T. A. Vartanyan and V. V. Khromov, Zh. Eksp. Teor. Fiz. 78:538 (1980) [Sov. Phys.-JETP 51 (1980)]; T. A. Vartanyan, Yu. N. Maksimu, S. G. Przhibelskii and V. V. Khromov, Pis’ma Zh. Eksp. Teor. Fiz. 29: 281 (1979).

    ADS  Google Scholar 

  32. E. W. Schmid and H. Ziegelmann, “The Quantum-Mechanical Three Body Problem,” Vieweg, Braunschweig (1974).

    Google Scholar 

  33. H. J. Korsch and R. Môhlenkamp, J. Phys. B 10:3451 (1977); H. J. Korsch, Phys. Rev. A 14:1645 (1976); B. J. B. Crowley and B. Buck, J. Phys. G 4: 9 (1978).

    Article  ADS  Google Scholar 

  34. K. Burnett, unpublished work.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this paper

Cite this paper

Burnett, K. (1983). Light Scattering as a Probe for Atomic Interactions. In: Lindgren, I., Rosén, A., Svanberg, S. (eds) Atomic Physics 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4550-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4550-3_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4552-7

  • Online ISBN: 978-1-4684-4550-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics