Skip to main content

Atomic Collisions in the High Energy Regime

  • Conference paper
Atomic Physics 8

Abstract

An understanding of the physics of electronic and atomic collisions draws heavily on our knowledge of atomic structure. However the converse is also true, i.e., experiments in collision physics often shed light on aspects of atomic structure. The prime example here is the “high energy atomic collision physics” experiment of Rutherford which established the basic structure of the nuclear atom. The fundamental contributions of Bohr to the theory of atomic structure are matched by his early contributions to the theory of charge changing collisions. Prof. Fano, in the opening paper of this conference, pointed out the equivalence of the structural and collisional views of a scattering resonance, i.e., should one treat it as a perturbation on a scattering trajectory or, as in his view, should it be treated as a structural entity undergoing a time evolution in the center of mass system?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. H. Madison and E. Merzbacher, “Theory of Charged-Particle Excitation”, in “Atomic Inner Shell Processes”, B. Crasemann, ed. (Academic Press, New York, 1975 ) pp. 1–72.

    Google Scholar 

  2. B. Muller and W. Greiner, Z. Naturforsch. 31a 1 (1976) and G. Soff, W. Betz, J. Kirsch, V. Oberacker, J. Reinhardt, K. Wietschorke, B. Muller and W. Grieiner, GSI Report M-6-78.

    Google Scholar 

  3. J. Bang and J. M. Hansteen, Kgl. Dan. Vidensk. Selsk. Mat. Fys. Med. 31 #13 (1959).

    Google Scholar 

  4. G. Gaukler, Ph.D. Thesis, Heidelberg 1981.

    Google Scholar 

  5. D. Trautmann and F. Rösel, Nucl. Instrum. Methods 169, 259 (1980).

    Article  ADS  Google Scholar 

  6. R. Schuch, “Characteristic X Ray Production in High-Energy Heavy-Ion Collisions”, in “Physics of Electronic and Atomic Collisions”, S. Datz, ed. ( North Holland Press, 1982 ) pp. 151–167.

    Google Scholar 

  7. D. Liessen, P. Armbruster, F. Bosch, S. Hagmann, P. H. Mokier, S. Schmidt-Böcking, R. Schuch, J. B. Wilhelmy and H. J. Wollersheim, Phys. Rev. Lett. 44, 983 (1980).

    Article  ADS  Google Scholar 

  8. B. Frickearid, G. Soff, Atomic Data and Nuclear Data Tables 19, 83 (1977).

    Article  ADS  Google Scholar 

  9. See e. g., J. Barrett, B. M. Johnson, K. W. Jones, R. Schuch, I. Tserruya and T. H. Kruse, Abstr. XII Int. Conf. on Phys. of Elect, and Atomic Coll., S. Datz, ed. (North Holland Press, 1981 ) pp. 716–717.

    Google Scholar 

  10. R. Shakeshaft, “Atomic Rearrangement Collisions at Assymtotically High Impact Velocities” in “Physics of Electronic and Atomic Collisions”, S. Datz, ed. (North Holland Press, 1982 ) pp. 123–138.

    Google Scholar 

  11. E. Horsdal-Pedersen, “Electron Capture from K Shells by Light Ions”, in “Physics of Electronic and Atomic Collisions”, S. Datz, ed. (North Holland Press, 1982 ) pp. 139 - 149.

    Google Scholar 

  12. S. Hagman, C. L. Cocke, J. R. McDonald, P. Richard, H. Schmidt-B’ocking and R. Schuch, Phys. Rev. A 25, 1918 (1982).

    Article  ADS  Google Scholar 

  13. C. D. Lin, unpublished.

    Google Scholar 

  14. R. E. Olson, Phys. Rev. A 24, 1726 (1981).

    Article  ADS  Google Scholar 

  15. H. Knudsen, P. Hvelplund, L. H. Andersen, S. Bj0rnelund, M. Frost, H. K. Haugen and E. Samso, Physica Scripta (in press).

    Google Scholar 

  16. J. Eichler and F. T. Chan, Phys. Rev. A 20, 104 (1979).

    Article  ADS  Google Scholar 

  17. H. Ruyfuku and T. Watanabe, Phys. Rev. A 21, 745 (1980) and H. Ruyfuku, JAERI-M-82-031 (1982).

    Google Scholar 

  18. S. Ohtani, Physica Scripta (in press)

    Google Scholar 

  19. M. E. Rudd and J. Macek, Case Studies in Atomic Physics 3, 125 (1972).

    Google Scholar 

  20. I. A. Sellin, in Atomic Physics 7, D. Kleppner and F. M. Pipkin. ( Plenum Press, 1981 ) pp. 455–489.

    Google Scholar 

  21. M. Breinig, S. B. Elston, S. Huldt, L. Liljeby, C. R. Vane, S. D. Berry, G. A. Glass, M. Schauer, I. A. Sellin, G. D. Alton, S. Datz, S. Overbury, R. Laubert and M. Suter, Phys. Rev. A 25, 3015 (1982).

    Article  ADS  Google Scholar 

  22. C. R. Vane, I. A. Sellin, S. B. Elston, M. Suter, R. S. Thoe, G. D. Alton, S. D. Berry and G. A. Glass, Phys. Rev. Lett. 43, 1388 (1979).

    Article  ADS  Google Scholar 

  23. J. R. McDonald and F. W. Martin, Phys. Rev. A 14, 1965 (1971).

    Article  ADS  Google Scholar 

  24. C. L. Cocke, R. DuBois, T. J. Gray, E. Justiniano and C. Can, Phys. Rev. Lett. 46, 1671 (1981).

    Article  ADS  Google Scholar 

  25. W. Groh, A. Muller, C. Achenbach, A. S. Schlachter and E. Salzborn, Phys. Lett. 85A, 77 (1981).

    Article  Google Scholar 

  26. See e. g., E. N. Fuls, P. R. Jones, E. P. Ziemba and E. Everhart, Phys. Rev. 107, 704 (1957).

    Article  ADS  Google Scholar 

  27. See e. g., A. Russek and M. T. Thomas, Phys. Rev. 114, 1538 (1959).

    Article  ADS  Google Scholar 

  28. E. Salzborn, private communication.

    Google Scholar 

  29. M. J. Alguard, R. S. Swent, R. L. Pantell, B. L. Berman, S. D. Bloom and S. Datz, Phys. Rev. Lett. 42, 1148 (1979); R. L. Swent, R. H. Pantell, M. J. Alguard, B. L. Berman, S. D. Bloom and S. Datz, Phys. Rev. Lett. 43, 1723 (1979); J. U. Andersen and E. Laegsgaard, Phys. Rev. Lett. 44, 1079 (1980).

    Article  ADS  Google Scholar 

  30. J. Lindhard, K. Dansk. Vidensk. Selsk. Mat. Fys. Medd. 34 No. 14 (1965).

    Google Scholar 

  31. For a general review of channeling see: D. S. Gemmell, Rev. Mod. Phys. 46, 129 (1974).

    Article  ADS  Google Scholar 

  32. R. L. Swent, R. H. Pantell, S. Datz, M. J. Alguard, B. L. Berman, R. Alverez and D. C. Hamilton, in Physics of Electronic and Atomic Collisions, S. Datz, ed. ( Plenum Press, 1981 ) p. 861.

    Google Scholar 

  33. J. U. Andersen, E. Bonderup, E. Laegsgaard, B. B. Marsh and A. H. Sorensen, Nucl. Instrum. Methods 194, 209 (1982).

    Article  ADS  Google Scholar 

  34. S. Datz, R. Fearick, B. L. Berman, J. Kephart, R. H. Pantell and H. Park, unpublished.

    Google Scholar 

  35. J. U. Andersen, K. R. Eriksen and E. Laegsgaard, Physica Scripta 24, 588 (1981).

    Article  ADS  Google Scholar 

  36. J. U. Andersen, S. Datz, E. Laegsgaard, J. F. P. Sellschop and A. H. Sørensen, Phys. Rev. Lett. 49, 215 (1982).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this paper

Cite this paper

Datz, S. (1983). Atomic Collisions in the High Energy Regime. In: Lindgren, I., Rosén, A., Svanberg, S. (eds) Atomic Physics 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4550-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4550-3_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4552-7

  • Online ISBN: 978-1-4684-4550-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics