Skip to main content

A Time-Dependent Local Density Approximation of Atomic Photoionization

  • Conference paper

Abstract

In recent years considerable effort has been expended in the calculation of accurate atomic photoionization cross sections. Interestingly, it has proved necessary to proceed far beyond the simplest Hartree-Fock approximation (HFA) to achieve this goal. The most extensive calculations to date have employed either the random phase approximation with exchange (RPAE)1 or many-body perturbation theory (MBPT)2. Both of these approaches build systematically on standard Hartree-Fock theory and yield results which are generally in excellent agreement with experiment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M, Ya. Amusia, in Advances in Atomic and Molecular Physics, vol, 17, edited by D. Bates and B. Bederson (Academic, NY 1981 ).

    Google Scholar 

  2. H. P. Kelly and S. L. Carter, Phys. Scrip, (Sweden) 21, 448 (1980).

    Article  ADS  Google Scholar 

  3. W, Kohn and P8 Vashishta, in Theory of the Inhomogeneous Electron Gas, edited by S. Lundqvist and N, March (Plenum, NY 1982 ).

    Google Scholar 

  4. S, H. Vosko, L. Wilk and M, Nusair, Can, J, Phys, 58, 1200 (1980).

    Article  ADS  Google Scholar 

  5. O. Gunnarsson and B, I, Lundqvist, Phys. Rev. B13, 4274 (1976).

    Article  ADS  Google Scholar 

  6. J, C. Slater, The Self -Consistent Field for Molecules and Solids: Quantum Theory of Molecules and Solids, vol, 4, ( McGraw Hill, NY, 1974 ).

    Google Scholar 

  7. A, R. Williams and U, von Barth, in Theory of the Inhomogeneous Electron Gas, edited by S. Lundqvist and N, March (Plenum, NY 1982),

    Google Scholar 

  8. M. Ya. Amusia and N. A, Cherepkov, Case Stud. Atom. Phys, 5, 47 (1975).

    Google Scholar 

  9. J. B. West and J. Morton, Atom. Data and Nuc. Tab, 22, 103 (1978).

    Article  ADS  Google Scholar 

  10. R. Ahlberg and O, Goscinski, J, Phys, B 8, 2149 (1975).

    Article  ADS  Google Scholar 

  11. A. Zangwill and P. Soven, Phys, Rev. A 21, 1561 (1980),

    Google Scholar 

  12. M. J. Stott and E. Zaremba, Phys. Rev, A 21, 12 (1980).

    Article  ADS  Google Scholar 

  13. G. D. Mahan, Phys. Rev. A 22, 1780 (1980),

    Google Scholar 

  14. D. Liberman, LASL (unpublished),

    Google Scholar 

  15. A. Zangwill and P, Soven, J, Vac. Sci. Technol, 17, 159 (1980),

    Google Scholar 

  16. J. Geiger, Z. Phys, A 282, 129 (1977),

    Google Scholar 

  17. A, Zangwill, thesis ( University of Pennsylvania, Philadelphia 1981 ).

    Google Scholar 

  18. G. V, Marr and J, B. West, Atom, Data Nuc, Tab, 18, 497 (1976),

    Google Scholar 

  19. P, Rabe, K, Radier and H. W. Wolff, in Vacuum UV Radiation Physics edited by E, Koch et, al, (Vieweg-Pergamon, Berlin, 1974),

    Google Scholar 

  20. G. Wendin, in Photoionization and Other Probes of Many-Electron Interactions, edited by F. J. Wuilleumier (Plenum, NY 1976),

    Google Scholar 

  21. M. Ya. Amusia, in Atomic Physics 5, edited by R. Marrus et. al. ( Plenum, NY 1977 ).

    Google Scholar 

  22. H. P. Kelly, S. L, Carter and B, E. Norum, Phys. Rev. A 25, 2052 (1982).

    Article  ADS  Google Scholar 

  23. Z, Crljen and G. Wendin, to be published.

    Google Scholar 

  24. M. H. Hecht and I, Lindau, Phys, Rev, Lett. 47, 821 (1981) and private communication,

    Google Scholar 

  25. G. Wendin, in Vacuum UV Radiation Physics, edited by E. Koch etal. ( Vieweg-Pergamon, Berlin, 1974 ).

    Google Scholar 

  26. A. Zangwill and P, Soven, Phys, Rev. B 24, 4121 (1981),

    Google Scholar 

  27. E. R. Brown; S. L. Carter and H. P. Kelly, Phys, Lett, 66A, 290 (1978),

    Google Scholar 

  28. N. A. Cherepkov and L, V. Chernysheva, Phys. Lett, 60A, 103 (1977).

    Article  Google Scholar 

  29. P. J. Feibelman, Phys, Rev. B 12, 1319 (1975),

    Article  ADS  Google Scholar 

  30. T. Ando, Z, Phys. B26, 263 (1977),

    ADS  Google Scholar 

  31. Z, Levine and P. Soven, to be published,

    Google Scholar 

  32. P, C. Martin, in Many-Body Physics, edited by C. DeWitt and R. Balian (Gordon and Breach, NY 1968),

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this paper

Cite this paper

Zangwill, A. (1983). A Time-Dependent Local Density Approximation of Atomic Photoionization. In: Lindgren, I., Rosén, A., Svanberg, S. (eds) Atomic Physics 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4550-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4550-3_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4552-7

  • Online ISBN: 978-1-4684-4550-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics