Skip to main content

Mitochondrial Genes and their Expression in Higher Plants

  • Chapter
Book cover Structure and Function of Plant Genomes

Part of the book series: NATO Advanced Science Institutes Series ((NSSA,volume 63))

Abstract

Many of the major changes which occur during growth and differentiation of higher plants are associated with, or dependent upon, marked changes in mitochondrial number, structure and activity. However, very little is known about either the genes which code for mitochondrial proteins, nor the environmental, physiological and genetic factors which regulate mitochondrial biogenesis and coordinate it with development of the plant cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.J. Leaver and M.W. Gray Mitochondrial genome organisation and expression in higher plants, Ann. Rev. Plant Physiol. 33: 373 (1982).

    Article  CAS  Google Scholar 

  2. P. Slonimski, P. Borst and G. Attardi (1982). “Mitochondrial Genes”, Cold Spring Harbor monograph series, 12.

    Google Scholar 

  3. G. Attardi, Organisation and expression of the mammalian mitochondrial genome: a lesson in economy, Trends Biochem. Sei. 86, 100 (1981).

    Article  Google Scholar 

  4. P. Borst and L.A. Grivell One gene’s intron is another gene’s exon, Nature 289: 439 (1981).

    Article  PubMed  CAS  Google Scholar 

  5. L.A. Grivell and P. Borst Mitochondrial mosaics — maturases on the move, Nature 298: 703 (1982).

    Article  PubMed  CAS  Google Scholar 

  6. A. Tzagoloff, G. Macino, W. Sebald Mitochondrial genes and translation products, Ann. Rev. Biochem. 48: 419 (1979).

    Article  PubMed  CAS  Google Scholar 

  7. W. Neupert and G. Schatz How proteins are transported into mitochondria, Trends Biochem. Sei. 6: 1 (1981).

    Article  CAS  Google Scholar 

  8. B.L. Ward, R.S. Anderson and A.J. Bendich The size of the mitochondrial genome is large and variable in a family of plants (Cucurbitaceae), Cell 25: 793 (1981).

    Article  PubMed  CAS  Google Scholar 

  9. Levings C.S., Shah D.M., Hu W.W.L., Pring D.R., Timothy D.H. (1979), Molecular heterogeneity among mitochondrial DNAs from different maize cytoplasms, in: “Extrachromosomal DNA, ICNUCLA Symposium on Molecular and Cellular Biology”, ed. D. Cummings, P. Borst, I. David, S. Weissman, C.F. Fox. Academic Press, New York.

    Google Scholar 

  10. D.B. Stern and D.M. Lonsdale, Mitochondrial and chloroplast genomes of maize have a 12 kb DNA sequence in common, Nature in press (1982).

    Google Scholar 

  11. D.B. Stern, T.A. Dyer and D.M. Lonsdale Organisation of the mitochondrial ribosomal RNA genes in maize, Nucleic Acids Res. 11: 3333 (1982).

    Article  Google Scholar 

  12. T.D. Fox and C.J. Leaver The Zea mays mitochondrial gene coding cytochrome oxidase subunit II has an intervening sequence, and does not contain TGA codons, Cell 26: 315 (1981).

    PubMed  CAS  Google Scholar 

  13. R. Rott and N. Nelson Purification and immunological properties of proton-ATPase complexes from yeast and rat liver mitochondria, J. Biol. Chem. 256: 9224 (1981).

    PubMed  CAS  Google Scholar 

  14. B.G. Forde and C.J. Leaver Nuclear and cytoplasmic genes controlling synthesis of variant mitochondrial polypeptides in male-sterile maize, Proc. Natl. Acad. Sei. U.S.A. 77: 418 (1980).

    Article  CAS  Google Scholar 

  15. L.K. Dixon and C.J. Leaver, Mitochondrial gene expression and cytoplasmic male sterility in sorghum, Plant Mol. Biol. 1: 89(1982)

    Article  CAS  Google Scholar 

  16. L.K. Dixon, C.J. Leaver, R.I.S. Brettell and B.G. Gengenbach Mitochondrial sensitivity to D. maydis T-toxin and the synthesis of a variant mitochondrial polypeptide in plants derived from maize tissue cultures with Texas male-sterile cytoplasm, Theor. Appl. Genet. 63: 75 (1982).

    CAS  Google Scholar 

  17. B.G. Gengenbach, J.A. Connelly, D.R. Pring and M.F. Conde Mitochondrial DNA variation in maize plants regenerated during tissue culture selection, Theor. Appl. Genet. 59: 161 (1981).

    Article  CAS  Google Scholar 

  18. R.J. Kemble, R.B. Flavell and R.I.S. Brettell Mitochondrial DNA analyses of fertile and sterile maize plants derived from tissue culture with Texas male sterile cytoplasm, Theor. Appl. Genet. 62: 213 (1982).

    CAS  Google Scholar 

  19. D.R. Pring, M.F. Conde and K.F. Schertz Organelle genome diversity in Sorghum: male sterile cytoplasms, Crop Sei. 22: 414 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Leaver, C.J., Dixon, L.K., Hack, E., Fox, T.D., Dawson, A.J. (1983). Mitochondrial Genes and their Expression in Higher Plants. In: Ciferri, O., Dure, L. (eds) Structure and Function of Plant Genomes. NATO Advanced Science Institutes Series, vol 63. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4538-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4538-1_34

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4540-4

  • Online ISBN: 978-1-4684-4538-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics