Skip to main content

Comparative Studies on tRNAs and Aminoacyl-tRNA Synthetases from Various Photosynthetic Organisms

  • Chapter

Part of the book series: NATO Advanced Science Institutes Series ((NSSA,volume 63))

Abstract

Chloroplasts have their own protein synthesizing system, using chloroplast-specific tRNAs which are different from their cytoplasmic counterparts and are coded for by chloroplast DNA (Weil, 1979; Weil and Parthier, 1982). Total chloroplast tRNA can be fractionated by two-dimensional polyacrylamide gel electrophoresis (Burkard et al., 1982) into individual tRNAs, which can be recovered from the gel, identified by aminoacylation and labeled with 32P at their 3′ end using α-32P-ATP and tRNA nucleotidyl transferase (Mubumbila et al., 1980). Each labeled tRNA can then be hybridized to DNA fragments which have been generated by the action of a restriction endonuclease on chloroplast DNA, fractionated by agarose gel electrophoresis, and transferred to nitrocellulose strips. As the position of these fragments on the circular map of the chloroplast chromosome has been previously determined, this approach allows the localization of the tRNA genes. Such a tRNA gene map was first established in the case of the spinach chloroplast genome (Driesel et al., 1979), which is a circular molecule containing two inverted repeats; each of these inverted repeats contains a set of ribosomal RNA genes, and the spacer located between the 16S and the 23S rRNA gene was shown to contain a tRNAIle gene (Bohnert et al., 1979). Such tRNA gene mapping studies have now been extended to the chloroplast genomes of other photosynthetic organisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bohnert HJ, Driesel AJ, Crouse EJ, Gordon K, Herrmann RG, Steinmetz A, Mubumbila M, Keller M, Burkard G, Weil JH (1979). Presence of a transfer RNA gene in the spacer sequence between the 16S and 23S rRNA genes of spinach chloroplast DNA. FEBS Lett 103: 191.

    Article  Google Scholar 

  • Burkard G, Steinmetz A, Keller M, Mubumbila M, Crouse EJ, Weil JH (1982). Resolution of chloroplast tRNAs by two-dimensional gel electrophoresis. In Edelman M, Hallick RB, Chua NH (eds): “Methods in Chloroplast Molecular Biology”, Amsterdam, Elsevier, in press.

    Google Scholar 

  • Colas B, Imbault P, Sarantoglou V, Boulanger Y, Weil JH (1982a) chloroplastic and cytoplasmic valyl-and leucyl-tRNA synthetases from Euglena gracilis. Comparative studies of their structural properties. Biochim Biophys Acta 697:71.

    PubMed  CAS  Google Scholar 

  • Colas B, Imbault P, Sarantoglou V, Weil JH (1982b). Immunological evidence for structural differences between Euglena gracilis chloroplastic valyl-and leucyl-tRNA synthetases and their cytoplasmic counterparts. FEBS Lett 141:213.

    Article  PubMed  CAS  Google Scholar 

  • Driesel AJ, Crouse EJ, Gordon K, Bohnert HJ, Herrmann RG, Steinmetz A, Mubumbila M, Keller M, Burkard G, Weil JH (1979). Fractionation and identification of the individual spinach chloroplast transfer RNAs and mapping of their genes on the restriction endonuclease cleavage site map of chloropiast DNA. Gene 6: 285.

    Article  PubMed  CAS  Google Scholar 

  • El Gewely MR, Lomax MI, Lau ET, Helling RB, Farmerie W, Barnett WE (1981). A map of specific cleavage sites and tRNA genes in the chloroplast genome of Euglena gracilis bacillaris. Mol Gen Genet 181: 296.

    Article  Google Scholar 

  • Graf L, Kössel H, Stutz E (1980). Sequencing of 16S–23S spacer in a ribosomal RNA operon of Euglena gracilis chloroplast DNA reveals two tRNA genes. Nature 286: 908.

    Article  PubMed  CAS  Google Scholar 

  • Gray PW, Hallick RB (1978). Physical mapping of the Euglena gracilis chloroplast DNA and ribosomal RNA gene region. Biochemistry 17: 284.

    Article  PubMed  CAS  Google Scholar 

  • Guillemaut P, Steinmetz A, Burkard G, Weil JH (1975). Aminoacylation of tRNALeu species from E.coli and from the cytoplasm, chloroplasts and mitochondria of Phaseolus vulgaris by homologous and heterologous enzymes. Biochim Biophys Acta 378: 64.

    PubMed  CAS  Google Scholar 

  • Guillemaut P, Weil JH (1982). The nucleotide sequence of the maize and spinach chloroplast isoleucine transfer RNA encoded in the 16S to 23S rDNA spacer. Nucl Acids Res 10: 1653.

    Article  PubMed  CAS  Google Scholar 

  • Hallick RB, Gray PW, Chelm BK, Rushlow KE, Orozco EM (1978). Euglena gracilis chloroplast DNA structure, gene mapping and RNA transcription. In Akoyunoglou G, Argyroudi-Akoyunoglou JH (eds): “Chloroplast Development”, Amsterdam, Elsevier, p 619.

    Google Scholar 

  • Imbault P, Sarantoglou V, Weil JH (1979). Purification of the chloropla&tic valyl-tRNA synthetase from Euglena gracilis. Biochem Biophys Res Commum 88:75.

    Article  CAS  Google Scholar 

  • Imbault P, Colas B, Sarantoglou V, Boulanger Y, Weil JH (1981). Chloroplast leucyl-tRNA synthetase from Euglena gracilis. Purification, kinetic analysis and structural characterization Biochemistry 20:5855.

    Article  PubMed  CAS  Google Scholar 

  • Imbault P, Sarantoglou V, Weil JH (1982). Properties of purified chloroplastic and cytoplasmic valyl-and leucyl-tRNA synthetases from Euglena gracilis. Phytochemistry 21:1189.

    Article  CAS  Google Scholar 

  • Jenni B, Stutz E (1978). Physical mapping of the ribosomal DNA region of Euglena gracilis chloroplast DNA. Eur J Biochem 88: 127.

    Article  PubMed  CAS  Google Scholar 

  • Keller M, Burkard G, Bohnert HJ, Mubumbila M, Gordon K, Steinmetz A, Heiser D, Crouse EJ, Weil JH (1980). Transfer RNA genes associated with the 16S and 23S rRNA genes of Euglena chloroplast DNA. Biochem Biophys Res Commun 95: 47.

    Article  PubMed  CAS  Google Scholar 

  • Knapp G, Ogden RC, Peebles CL, Abelson J (1979). Splicing og yeast tRNA precursors: Structure of the reaction intermediates. Cell 18: 37.

    Article  PubMed  CAS  Google Scholar 

  • Koch W, Edwards K, Kössel H (1981). Sequencing of the 16S–23S spacer in a ribosomal RNA operon of Zea mays chloroplast DNA reveals two splits tRNA genes. Cell 25: 203.

    Article  PubMed  CAS  Google Scholar 

  • Loughney K, Lund E, Dahlberg JE (1982). tRNA genes are found between the 16S and 23S rRNA genes in Bacillus subtilis. Nucl Acids Res 10:1607.

    Article  PubMed  CAS  Google Scholar 

  • Malnoe P, Rochaix JD (1978). Localization of 4S RNA genes on chloroplast genome of Chlamydomonas reinhardi. Mol Gen Genet 166:269.

    PubMed  CAS  Google Scholar 

  • Morgan EA, Ikemura T, Nomura M (1977). Identification of spacer tRNA genes in individual ribosomal RNA transcription units of E.coli. Proc Natl Acad Sei US 74:2710.

    Article  CAS  Google Scholar 

  • Mubumbila M, Burkard G, Keller M, Steinmetz A, Crouse EJ, Weil JH (1980). Hybridization of bean, spinach, maize and Euglena transfer RNAs with homologous and heterologous chloroplasts DNAs. Biochim Biophys Acta 609: 31.

    PubMed  CAS  Google Scholar 

  • Orozco EM, Rushlow KE, Dodd JR, Hallick RB (1980). Euglena gracilis chloroplast ribosomal RNA transcription units. II. Nucleotide sequence homology between 16S–23S ribosomal RNA spacer and the 16S ribosomal RNA leader regions. J Biol Chem 255: 10997.

    PubMed  CAS  Google Scholar 

  • Rawson JR, Kushner SR, Vapnek D, ALton NK, Boerma CL (1978). Chloroplast ribosomal RNA genes in Euglena gracilis exists as three clustered tandem repeats. Gene 3: 191.

    Article  CAS  Google Scholar 

  • Sarantoglou V, Imbault P, Weil JH (1980). The use of affinity elution from blue dextran Sepharose by yeast tRNAY2 Val in the complete purification of the cytoplasmic valyl-tRNA synthetase from Euglena gracilis. Biochem Biophys Res Commun 93;134.

    Google Scholar 

  • Sarantoglou V, Imbault P, Weil JH (1981). Purification of Euglena gracilis cytoplasmic leucyl-tRNA synthetase. Plant Sei Lett. 22: 291.

    Article  CAS  Google Scholar 

  • Souciet G, Dietrich A, Colas B, Razafimahatratra P, Weil JH (1982). Purification and properties of chloroplast leucyl-tRNA synthetase from a higher plant: Phaseolus vulgaris J Biol Chem, in press.

    Google Scholar 

  • Steinmetz A, Gubbins EJ, Bogorad L, (1982). Nucleic Acids Res 10, 3027–3037.

    Article  PubMed  CAS  Google Scholar 

  • Weil JH (1979). Cytoplasmic and organellar tRNAs in plants. In Hall TC, Davies J (eds): “Nucleic Acids in Plants”, West Palm Beach, CRC Press, p 143.

    Google Scholar 

  • Weil JH, Guillemaut P, Burkard G, Canaday J, Mubumbila M, Osorio ML, Keller M, Gloeckler R, Steinmetz A, Keith G, Heiser D, Crouse EJ (1981). Comparative studies on chloroplast transfer RNAs: tRNA sequences and tRNA gene localization in the rDNA units. In Akoyunoglou G (ed): “Photosynthesis”, Philadelphia, Balabian International Science, vol V, p 777.

    Google Scholar 

  • Weil JH, Parthier B (1982). Transfer RNAs and aminoacyl-tRNA synthetases in plants. In Boulter D, Parthier B (eds): “Encyclopedia of Plant Physiology, New Series”, Heidelberg, Springer Verlag, vol 17, p 65.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Weil, J.H. et al. (1983). Comparative Studies on tRNAs and Aminoacyl-tRNA Synthetases from Various Photosynthetic Organisms. In: Ciferri, O., Dure, L. (eds) Structure and Function of Plant Genomes. NATO Advanced Science Institutes Series, vol 63. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4538-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4538-1_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4540-4

  • Online ISBN: 978-1-4684-4538-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics