Skip to main content

Part of the book series: NATO Advanced Science Institutes Series ((ASIB,volume 92))

Abstract

Structural and dynamical properties of superionic conductors AgI and CuI are studied using molecular dynamics (MD) techniques. Our model of these superionic conductors is based on the use of effective pair potentials. To determine the constants in these potentials, cohesive energy and bulk modulus are used as input; in addition one uses notions of ionic size based on the known crystal structure.

Salient features of the MD technique are outlined. Methods of treating long range Coulomb forces are discussed in detail. This includes the manner of doing Ewald sum for MD cells of arbitrary shape. Features which can be incorporated to expedite the MD calculations are also discussed.

A novel MD technique which allows for a dynamically controlled variation of the shape and size of the MD cell is described briefly. The development of this novel technique has made it possible to study structural phase transitions in superionic conductors. For α-AgI, among the structural properties we have studied are: partial pair correlation functions, mean square displacements of iodines, cation density maps, Havens ratio, etc. The dynamical properties examined include cation self-diffusion, nature of cation jumps, bias in successive jumps, velocity auto correlation functions, current-current correlation functions.

In CuI, we have examined the microscopic nature of γ→α transition. It is found that at about 700 K the copper ions undergo an order-disorder transformation leading to a specific heat anomaly. The nature of the first-order transition and its precursor effects are also analyzed. Results for a number of other structural and dynamical properties for α-CuI are presented.

In AgI the α⇆β transition is studied using the new MD technique. In our model, upon heating β-AgI, the iodines undergo hcp→bcc transformation and the silver ions become mobile, whereas the reverse transformation is observed on cooling α-AgI.

Work supported by the U.S. Department of Energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Tubandt and E. Lorenz, Z. Physik, Chem. 87, 513 (1914).

    Google Scholar 

  2. K. Funke, Prog. Solid State Chem. 11, 345 (1976).

    Article  Google Scholar 

  3. G.D. Mahan and W.L. Roth (Eds.), Superionic Conductors, Plenum, New York, 1976.

    Google Scholar 

  4. S. Geller (Ed.), Solid Electrolytes, Springer-Verlag, New York, 1977.

    Google Scholar 

  5. P. Hagenmuller and W. Van Gool (Eds.), Solid Electrolytes, Academic Press, New York, 1978.

    Google Scholar 

  6. M.B. Salamon (Ed.), Physics of Superionic Conductors, Springer-Verlag, New York, 1979.

    Google Scholar 

  7. J.B. Boyce and B.A. Huberman, Physics Reports, 51, 190 (1979).

    Article  ADS  Google Scholar 

  8. P. Vashishta, J.N. Mundy and G.K. Shenoy (Eds.), Fast Ion Transport in Solids, Elsevier North-Holland, New York, 1979.

    Google Scholar 

  9. W.F. Flygare and R.A. Huggins, J. Phys. Chem. Solids 34, 1119 (1973).

    Article  Google Scholar 

  10. W. Schommers, Phys. Rev. Letters 38, 1536 (1977).

    Article  ADS  Google Scholar 

  11. W. Buhrer, R.M. Nicklow and P. Bruesch, Phys. Rev. B17, 3362 (1978).

    ADS  Google Scholar 

  12. W. Andreoni and J.C. Phillips, Phys. Rev. B, to be published.

    Google Scholar 

  13. P. Vashishta and A. Rahman, Phys. Rev. Letters 40, 1337 (1978).

    Article  ADS  Google Scholar 

  14. P. Vashishta and A. Rahman, in Fast Ion Transport in Solids (Eds., P. Vashishta, J.N. Mundy and G.K. Shenoy ), Elsevier North-Holland, 1979, p. 527.

    Google Scholar 

  15. L. Pauling, The Nature of the Chemical Bond, Cornell University Press, Ithaca, New York, 1960.

    Google Scholar 

  16. L.W. Strock, Z. Physik. Chemie B25, 411 (1934); B31, 132 (1936).

    Google Scholar 

  17. G. Burley, J. Phys. Chem. Solids 25, 629 (1964).

    Article  ADS  Google Scholar 

  18. P. Vashishta and A. Rahman, in Third International Meeting on Solid Electrolytes-Solid State Ionics and Galvanic Cells, Sept. 15–19, 1980, Tokyo Japan, Extended Abstracts, p. 187.

    Google Scholar 

  19. P. Vashishta, Bull. Am. Phys. Soc. 26, 372 (1981).

    Google Scholar 

  20. M. Parrinello and A. Rahman, Phys. Rev. Letters 45, 1196 (1980).

    Article  ADS  Google Scholar 

  21. M. Parrinello, A. Rahman and P. Vashishta, to be published.

    Google Scholar 

  22. A. Rahman, in Correlation Functions and Quasiparticle Interactions in Condensed Matter (Ed. J. Woods Halley, Plenum, 1977 ), p. 417.

    Google Scholar 

  23. L. Verlet, Phys. Rev. 159, 98 (1967).

    Article  ADS  Google Scholar 

  24. C.W. Gear, ANL Report No. 7126, Argonne National Laboratory (1966); Numerical Initial Value Problem in Ordinary Differential Equations, Prentice Hall, Englewood Cliffs, N.J., 1971.

    Google Scholar 

  25. A. Rahman and F. Stillinger, J. Chem. Phys. 55, 3336 (1971).

    Article  ADS  Google Scholar 

  26. J.D. Weeks, D. Chandler and H.C. Andersen, J. Chem. Phys. 54, 5237 (1971); 55, 5422 (1971).

    Google Scholar 

  27. R.W. Hockney, S.P. Goel and J.W. Eastwood, Chem. Phys. Letters 21, 589 (1973).

    Article  ADS  Google Scholar 

  28. M. Mandell, J. Statistical Physics 15, 299 (1976).

    Article  ADS  Google Scholar 

  29. S.W. de Leeuw, J.W. Perram and E.R. Smith, Proc. R. Soc. Lond. A373, 27 (1980); A373, 57 (1980).

    Google Scholar 

  30. K. Singer’s method has been explained in detail in, M.J.L. Sangster and M. Dixon, Adv. in Physics 25, 247 (1976).

    Google Scholar 

  31. M. Parrinello and A. Rahman have evaluated Ewald Sums for arbitrary shaped MD cells in their study of polymorphic transitions in alkali halides using the method of Ref. 20.

    Google Scholar 

  32. S. Brawer (Private Communication). Also see J. Chem. Phys. 72, 4264 (1980).

    Google Scholar 

  33. T. Soules, J. Chem. Phys. 72, 6314 (1980).

    Article  ADS  Google Scholar 

  34. Y. Hiwatari and A. Ueda, in Third International Meeting on Solid Electrolytes - Solid State Ionics and Galvanic Cells, Sept. 15–19, 1980, Tokyo, Japan, Extend Abstracts, p. 202; see also A. Fukumoto, Y. Hiwatari and A. Ueda, p. 205.

    Google Scholar 

  35. Y. Tsuchiya, S. Tamaki and Y. Waseda, J. Phys. C: Solid State Phys. 12, 5361 (1979);

    Article  ADS  Google Scholar 

  36. R.J. Cava and D.B. McWhan, Phys. Rev. Letters 15, 2046 (1980).

    Article  ADS  Google Scholar 

  37. C. Kittel, Introduction to Solid State Physics, Wiley, New York, 1971.

    Google Scholar 

  38. A. Kvist and R. Tarneberg, Z. Naturforsch. 25A, 257 (1970).

    ADS  Google Scholar 

  39. R. J. Cava, F. Reidinger and B. J. Wuensch, Solid State Commun. 24, 411 (1977).

    Article  ADS  Google Scholar 

  40. G. Jacucci and A. Rahman, J. Chem. Phys. 69, 4117 (1978).

    Article  ADS  Google Scholar 

  41. L. Lebowitz, J.K. Percus and L. Verlet, Phys. Rev. 153, 250 (1967); see also W.C. Kerr, Phys. Rev. B19, 5773 (1979).

    Google Scholar 

  42. R.K. Dejus, K. Sköld and B. Graneli, Solid State Ionics, 1, 327 (1980).

    Article  Google Scholar 

  43. K. Miyake, S. Hoshino and T. Takenaka, J. Phys. Soc. Japan 7, 19 (1952); Errata 7, 339 (1952).

    Google Scholar 

  44. A. Rahman and P. Vashishta, using MD trajectories for CuI the intensities of X-ray lines is calculated. The results are in good agreement with Ref. 42.

    Google Scholar 

  45. A. Rahman, J. Chem. Phys. 65, 4585 (1976);

    Article  Google Scholar 

  46. M. Dixon and M. Gillan, J. Phys. C 11, L165 (1978).

    Article  ADS  Google Scholar 

  47. A. Rahman, in Fast Ion Transport in Solids (Eds. P. Vashishta, J.N. Mundy and G.K. Shenoy ), Elsevier North-Holland, 1979, p. 643.

    Google Scholar 

  48. A. Rahman, Phys. Rev. 136, A405 (1964).

    Article  ADS  Google Scholar 

  49. M. O’Keeffee, in Superionic Conductors (Eds. G.D. Mahan and W.L. Roth ), Plenum, New York, 1976, p. 101.

    Chapter  Google Scholar 

  50. K. Funke, in Festkorperprobleme (Advances in Solid State Physics), XX, 1 (Ed. J. Treusch ), Vieweg, Braumschweig, 1980.

    Google Scholar 

  51. P.A. Eaglestaff, An Introduction to the Liquid State, Academic Press, London, 1967.

    Google Scholar 

  52. J.Y. Hansen and I.R. McDonald, Theory of Simple Liquids, Academic Press, London, 1976.

    Google Scholar 

  53. A. Rahman, K. Sköld, C. Pelizzari, S.K. Sinha and H.E. Flotow, Phys. Rev. B14, 3630 (1976);

    ADS  Google Scholar 

  54. C.J. Glinka, J.M. Rowe, J.J. Rush, A. Rahman, S.K. Sinha and H.E. Flotow, Phys. Rev. B17, 488 (1978).

    ADS  Google Scholar 

  55. K. Kompaan and Y. Haven, Trans. Faraday Soc. 52, 786 (1956); 54, 1498 (1958).

    Article  Google Scholar 

  56. P. Jordan and M. Pochon, Helv. Phys. Acta 30, 33 (1957).

    Google Scholar 

  57. I. Yokota, J. Phys. Soc. Japan 21, 420 (1966);

    Article  Google Scholar 

  58. H. O. Kazaki, J. Phys. Soc. Japan 23, 355 (1967).

    Article  Google Scholar 

  59. B.L. Davis and L.H. Adams, Science 146, 519 (1964).

    Article  ADS  Google Scholar 

  60. W.A. Bassett, T. Takahashi, Am. Geophys. Union. Trans. 45, 121 (1964).

    Google Scholar 

  61. P.W. Bridgman, Proc. Am. Acad. Arts Sci. 51, 55 (1915).

    Article  Google Scholar 

  62. G.J. Piermarini and C.E. Weir, J. Res. Natl. Bur. Stds. 66A, 325 (1962).

    Google Scholar 

  63. B.M. Riggleman and H.G. Drickamer, J. Chem. Phys. 38, 2721 (1963).

    Article  ADS  Google Scholar 

  64. B.-E. Mellander, A. Lunden and M. Friesel, in International Conference on Fast Ionic Transport in Solids, May 18–22, 1981, Gatlinburg, Tennessee, U.S.A., Extended Abstracts, p. 258.

    Google Scholar 

  65. H.C. Andersen, J. Chem. Phys. 72, 2384 (1980).

    Article  ADS  Google Scholar 

  66. J.B. Boyce and T. Hayes, in Physics of Superionic Conductors (Ed. M.B. Salamon ), Springer-Verlag, New York, 1979.

    Google Scholar 

  67. T. Hayes and J.B. Boyce, J. Phys. C: Solid St. Phys. 13, L731 (1980).

    Article  ADS  Google Scholar 

  68. G.D. Mahan, in Superionic Conductors (Eds. G.D. Mahan and W.L. Roth ), Plenum, New York, 1976, p. 115.

    Chapter  Google Scholar 

  69. H.U. Beyeler, P. Bruesch, L. Pietronero, W.R. Schneider, S. Strassler and H.R. Zeller, in Physics of Superionic Conductors (Ed. M.B. Salamon ), Springer-Verlag, New York, 1979, p. 77.

    Chapter  Google Scholar 

  70. T. Geisel, in Physics of Superionic Conductors (Ed. M.B. Salamon ), Springer-Verlag, New York, 1979, p. 201.

    Chapter  Google Scholar 

  71. R. Zeyher, in Fast Ion Transport in Solids (Eds. P. Vashishta, J.N. Mundy and G.K. Shenoy ), Elsevier North-Holland, 1979, p. 509.

    Google Scholar 

  72. L. Pietronero, S. Strassler and H.R. Zeller, in Fast Ion Transport in Solids (Eds. P. Vashishta, J.N. Mundy and G.K. Shenoy ), Elsevier North-Holland, New York, 1979, p. 159.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Rahman, A., Vashishta, P. (1983). Molecular Dynamics Studies of Superionic Conductors. In: Perram, J.W. (eds) The Physics of Superionic Conductors and Electrode Materials. NATO Advanced Science Institutes Series, vol 92. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4490-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4490-2_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4492-6

  • Online ISBN: 978-1-4684-4490-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics