Skip to main content

Part of the book series: NATO Advanced Science Institutes Series ((ASIB,volume 92))

  • 135 Accesses

Abstract

Starting from the assumption that matter, for our purposes, consists of interacting particles obeying classical mechanics, and using the postulates of statistical mechanics, one can model any specific material as a system of particles provided one knows what the interactions between the particles are. However, whatever interactions are chosen the integrals that it is necessary to solve are formidable. For example, the average potential energy is

$$ <U>=\int{U({{{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{r}}}^{N}})}p({{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{r}}^{N}})d{{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{r}}^{N}}, $$
(1)

where the probability density for a configuration of N distinguishable particles, \( {{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{r}}^{N}}\equiv({{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{r}}_{1}},{{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{r}}_{2}},....,{{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{r}}_{N}}) \), r2,...., rN) is

$$ {{Q}_{N}}=\int{exp\left[ -U({{{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{r}}}^{N}})/kT\right]d}{{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{r}}^{N}}. $$
(2)

where the configurational integral QN is

$$ {{Q}_{N}}=\int{exp\left[ -U({{{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{r}}}^{N}})/kT\right]}d{{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{r}}^{N}}. $$
(3)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. M. Hammersley and D. C. Handscomb, “Monte Carlo Methods”, Methuen, London (1964).

    Book  MATH  Google Scholar 

  2. J. P. Valleau and G. M. Torrie, A Guide to Monte Carlo for Statistical Mechanics: 2. Byways, in: “Modern Theoretical Chemistry, Vol. 5A, Equilibrium Statistical Mechanics of Fluids”, B. J. Berne, ed., Plenum, New York (1977).

    Google Scholar 

  3. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. Phys. 21: 1087 (1953).

    Article  ADS  Google Scholar 

  4. W. W. Wood, Monte Carlo Studies of Simple Liquid Models, in: “The Physics of Simple Liquids”, H. N. V. Temperley, J. S. Rowlinson, and G. S. Rushbrooke, eds., North-Holland, Amsterdam (1974).

    Google Scholar 

  5. J. P. Valleau and S. G. Whittington, A Guide to Monte Carlo for Statistical Mechanics: 1. Highways, in: “Modern Theoretical Chemistry, Vol. 5A, Equilibrium Statistical Mechanics of Fluids”, B. J. Berne, ed., Plenum, New York (1977).

    Google Scholar 

  6. C. Zannoni, Computer Simulations, in: “The Molecular Physics of Liquid Crystals”, G. R. Luckhurst and G. W. Gray, eds., Academic Press, London (1979).

    Google Scholar 

  7. D. M. Heyes, M. Barber and J. H. R. Clarke, J. C. S. Faraday II 73:1485 (1977); 75:1240, 1469 and 1484 (1979).

    Google Scholar 

  8. W. Schommers, Phys.Rev. A16: 327 (1977).

    ADS  Google Scholar 

  9. M. J. L. Sangster and M. Dixon, Adv.Phys. 25: 247 (1976).

    Article  ADS  Google Scholar 

  10. G. N. Patey, G. M. Torrie, and J. P. Valleau, J.Chem.Phys. 71: 96 (1979).

    Article  ADS  Google Scholar 

  11. D. J. Adams, Chem. Phys. Lett., 62:329 (1979); in: “The Problem of Long-Range Forces in the Computer Simulation of Condensed Media”, D. Ceperely, ed., NRCC, Lawrence Berkeley Laboratory (1980).

    Google Scholar 

  12. I. R. McDonald and K. Singer, Disc. Faraday Soc. 43: 40 (1967).

    Article  Google Scholar 

  13. D. J. Adams and I. R. McDonald, Molec. Phys. 34: 287 (1977).

    Article  ADS  Google Scholar 

  14. D. R. Squire and W. G. Hoover, J. Chem. Phys. 50: 701 (1969).

    Article  ADS  Google Scholar 

  15. D. J. Adams and J. C. Rasaiah, Faraday Disc. 64: 22 (1978)

    Google Scholar 

  16. C. Pangali, M. Rao, and B. J. Berne, Chem. Phys. Lett. 55: 413 (1978).

    Article  ADS  Google Scholar 

  17. P. J. Rossky, J. D. Doll, and H. L. Friedman, J. Chem. Phys. 69: 4628 (1978).

    Article  ADS  Google Scholar 

  18. M. Rao, C. Pangali, and B. J. Berne, Molec. Phys. 37: 1773 (1979).

    Article  ADS  Google Scholar 

  19. M. Rao and B. J. Berne, J. Chem. Phys. 71: 129 (1979).

    Article  ADS  Google Scholar 

  20. I. R. McDonald, Molec. Phys. 23: 41 (1972).

    Article  ADS  Google Scholar 

  21. D. J. Adams and I. R. McDonald, J. Phys. C 7:2761 (1974); 8: 2198 (1975).

    Google Scholar 

  22. D. J. Adams and I. R. McDonald, Physica 79 B: 159 (1975).

    Google Scholar 

  23. G. É. Norman and V. S. Filinov, High Temp. USSR 7: 216 (1969).

    Google Scholar 

  24. D. J. Adams, Molec. Phys. 28: 1241 (1974).

    Article  ADS  Google Scholar 

  25. L. A. Rowley, D. Nicholson, and N. G. Parsonage, J. Comput. Phys. 17: 401 (1975).

    Article  ADS  Google Scholar 

  26. D. J. Adams, Molec. Phys. 32, 647 (1976); 37, 211 (1979).

    Article  Google Scholar 

  27. J. E. Lane and T. H. Spurling, Aust. J. Chem. 29: 2103 (1976);

    Article  Google Scholar 

  28. and 933 (1978).

    Google Scholar 

  29. L. A. Rowley, D. Nicholson, and N. G. Parsonage, Mol. Phys.

    Google Scholar 

  30. and 389 (1976); J. Comput. Phys. 26:66 (1978).

    Google Scholar 

  31. J. E. Lane, T. H. Spurling, B. C. Freasier, J. W. Perram, and E. R. Smith, Phys. Rev. A20: 2147 (1979).

    ADS  Google Scholar 

  32. W. van Megen and I. K. Snook, Molec. Phys. 39: 1043 (1980).

    Article  ADS  Google Scholar 

  33. G. M. Torrie and J. P. Valleau, Chem. Phys. Lett. 65: 343 (1979).

    Article  ADS  Google Scholar 

  34. J. A. Barker and D. Henderson, Rev. Mod. Phys. 48: 587 (1976).

    Article  MathSciNet  ADS  Google Scholar 

  35. J. N. Cape and L. V. Woodcock, J. Chem. Phys. 72: 976 (1980).

    Article  ADS  Google Scholar 

  36. F. F. Abraham, Phys. Rev. Lett. 44: 463 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  37. Stochastic Molecular Dynamics“, D. Ceperley and J. Tully, eds., NRCC, Lawrence Berkeley Laboratory (1979).

    Google Scholar 

  38. A. J. Stace, Molec. Phys. 38: 155 (1979).

    Article  ADS  Google Scholar 

  39. G. E. Murch and R. J. Thorn, Phil.Mag. 35:493; 36:517 and 529 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Adams, D. (1983). Introduction to Monte Carlo Simulation Techniques. In: Perram, J.W. (eds) The Physics of Superionic Conductors and Electrode Materials. NATO Advanced Science Institutes Series, vol 92. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4490-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4490-2_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4492-6

  • Online ISBN: 978-1-4684-4490-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics