Skip to main content

Laser Doppler Microscopy: Especially as a Method for Studying Brownian Motion and Flow in the Sieve Tubes of Plants

  • Chapter
The Application of Laser Light Scattering to the Study of Biological Motion

Part of the book series: NATO Advanced Science Institutes Series ((NSSA,volume 59))

Abstract

Laser Doppler velocimetry and photon correlation spectroscopy are well established as methods for measuring the flow and diffusion of particles in fluids. The diameters of the laser beams used are usually too wide to be placed precisely within plant or animal cells, capillaries, or other specimens of interest to biologists. Several groups of workers have described laser Doppler microscopes, either with crossed beams or with single beams. These instruments allow scattered laser light to be detected from volumes with diameters of 10 pm or less and enable the scattering volume to be seen and placed accurately in specimens viewed at high magnification. Some designs and principles of laser Doppler microscopes are discussed, especially of a single beam instrument and its application to the study of Brownian motion and flow in sieve tubes, the food transport channels in higher plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Maeda and S. Fujime, Quasielastic Light Scattering under Optical Microscope, Rev. scient. Instrum., 43: 566–567 (1972).

    Article  ADS  Google Scholar 

  2. G.V.R. Born, A. Melling and J.H. Whitelaw, Laser Doppler microscope for blood velocity measurements, Biorheology, 15: 163–172 (1978).

    Google Scholar 

  3. T. Cochrane and J.C. Earnshaw, Practical laser Doppler microscopes, J. Phys. E: Sci. Instrum., 11: 196–198 (1978).

    Article  ADS  Google Scholar 

  4. P.R. DiGiovanni, B. Manoushagian, S. Einav and H.J. Berman, An improved laser Doppler microscope for measurement of in vivo velocity distributions in the microcirculation, Proc. 6th New England Bioengineering Conf., Pergamon Press, New York, 113–116 (1978).

    Google Scholar 

  5. M. Horimoto and T. Koyama, Measurements of Blood Flow Velocity in Pulmonary Microvessels with laser Doppler Microscope and Investigation of several Factors Affecting Blood Flow Velocity, Biorheology, 18: 77–78 (1981).

    Google Scholar 

  6. M. Horimoto, T. Koyama, Y. Kikuchi, Y. Kakiuchi and M. Murao, Effect of Transpulmonary Pressure on Blood-flow Velocity in Pulmonary Microvessels, Respiration Physiology, 43: 31–41 (1981).

    Article  Google Scholar 

  7. T. Koyama, M. Horimoto, H. Mishina, T. Asakura, M. Horimoto and M. Murao, Laser Doppler Microscope in an oblique-backward mode and pulsatile blood flow velocity in pulmonary arteriole, Experentia, 35: 65–67 (1979).

    Article  Google Scholar 

  8. T. Koyama, M. Horimoto, H. Mishina, T. Asakura, M. Horimoto and M. Murao, Laser Doppler microscope in an oblique-backward mode and pulsatile blood flow velocity in pulmonary arteriole, Experentia, 35: 65–67 (1979).

    Article  Google Scholar 

  9. H. Mishina, T. Ushizaka and T. Asakura, A Laser Doppler Microscope: Its optical and signal analysing systems and some experimental results of flow velocity, Optics and laser Technology, 121–127 (June 1976).

    Google Scholar 

  10. S. Rahat, D.C. Howard, S. Einav and H.J. Berman, Reflectance, fringe mode laser Doppler microscope developed and used to determine velocity profiles of red cells in microvessels, Fed. Proc., 37: 214 (1978).

    Google Scholar 

  11. B.S. Rinkevichyus, A.V. Tolkachev, V.N. Sutoshin and V.L. Chudov, Laser Doppler Microscope, Radio Eng. and Electron Phys. (USA), 24: 114–116 (1979).

    Google Scholar 

  12. J.C. Earnshaw and M.W. Steer, Laser Doppler Microscopy, Proc. R. micr. Soc., 14: 108–110 (1979).

    Google Scholar 

  13. T.J. Herbert and J.D. Acton, “Photon correlation spectroscopy of light scattered from microscopic regions”, Applied Optics, 18: 588–590 (1979).

    Article  ADS  Google Scholar 

  14. R.P.C. Johnson, A laser Doppler microscope for biological studies, in:Proc. Conference on Biomedical applications of laser light scattering, Cambridge, England, Sept. 8–10, 1981, B.R. Ware, W.L. Lee and D.B. Sattelle eds., Elsevier North Holland (1982).

    Google Scholar 

  15. R.P.C. Johnson and D.A. Ross, Laser Doppler Microscopy and Fibre Optic Doppler Anemometry, in: The Analysis of Organic Surfaces, P. Echlin, ed., Wiley, New York, In Press.

    Google Scholar 

  16. A. Koniuta, M.T. Dudermel and P.M. Adler, A laser Doppler anemometer with microscopic intersection volume, J. Phys. E: Sci. Instrum., 12: 918–920 (1979).

    Article  ADS  Google Scholar 

  17. H.S. Dhadwal and D.A. Ross, Size and Concentration of Particles in Syton using the Fibre Optic Doppler Anemometer, FODA, J. Colloid and Interface Science, 76: 478–489 (1980).

    Article  Google Scholar 

  18. J.C. Earnshaw and M.W. Steer, Studies of cellular Dynamics by laser Doppler microscopy, Pestic. Sci., 10: 358–368 (1979).

    Article  Google Scholar 

  19. S. Aronoff, J. Dainty, P.R. Gorham, L.M. Srivastava and C.A. Swanson, eds., Phloem Transport, NATO Advanced Study Institute Series A, Volume 4, Plenum Press, New York and London (1975).

    Google Scholar 

  20. P.E. Weatherley and R.P.C. Johnson, The form and function of the sieve tube: A problem in reconciliation, Int. Rev. Cytol., 24: 149–192 (1968).

    Article  Google Scholar 

  21. R.P.C. Johnson, Can cell walls bending round xylem vessels control water flow? Planta, 136: 187–194 (1977).

    Article  Google Scholar 

  22. R.P.C. Johnson, The Microscopy of P-protein Filaments in Freeze-etched Sieve Pores; Brownian Motion Limits Resolution of their Positions, Planta, 143: 191–205 (1978).

    Google Scholar 

  23. P.E. Weatherley, Translocation in sieve tubes. Some thoughts on structure and mechanism, Physiol. Veg., 10: 731–742 (1972).

    Google Scholar 

  24. D.M. Lawton and R.P.C. Johnson, A superhelical model for the ultrastructure of ‘P-protein tubules’ in sieve elements of Nymphoides peZtata, Cytobiology, 14: 1–17 (1976).

    Google Scholar 

  25. R.P.C. Johnson, A. Freundlich and G.F. Barclay, Transcellular strands in sieve tubes; what are they? J. exp. Bot., 27: 1117–1136 (1976).

    Article  Google Scholar 

  26. D.D. Sabnis and J.W. Hart, Heterogeneity in Phloem Protein Complements from Different Species, Planta, 145: 459–466 (1979).

    Article  Google Scholar 

  27. E.A.C. MacRobbie, Phloem Translocation. Facts and Mechanisms: A Comparative Survey, Biol. Rev., 46: 429–481 (1971).

    Article  Google Scholar 

  28. D.D. Sabnis and J.W. Hart, Studies on the possible occurrence of Actomyosin-like proteins in phloem, Planta, 118: 271–281 (1974).

    Article  Google Scholar 

  29. B.A. Palevitz and P.K. Hepler, Is P-protein actin-like?–Not yet, Planta, 125: 261–271 (1975).

    Article  Google Scholar 

  30. D.R. Lee, D.C. Arnold and D.S. Fensom, Some microscopical observations of Heracleum using Nomarski optics, J. exp. Bot., 22: 25–38 (1971).

    Article  Google Scholar 

  31. G.F. Barclay, K.J. Oparka and R.P.C. Johnson, Induced disruption of sieve element plastids in HeracZeum mantegazzianum L. J. exp. Bot., 28: 709–717 (1977).

    Article  Google Scholar 

  32. G.F. Barclay and R.P.C. Johnson, Analysis of Particle motion in sieve tubes of Heracleum, Plant, Cell and Environment, 5: 173–178 (1982).

    Google Scholar 

  33. P. Le-Cong and R.H. Lovberg, Signal-to-noise improvement in laser Doppler velocimetry, Applied Optics, 19: 4222–4225 (1980).

    Article  ADS  Google Scholar 

  34. L.E. Drain, The Laser Doppler Technique, Wiley, Chichester (1980).

    Google Scholar 

  35. J.B. Abbiss, T.W. Chubb and E.R. Pike, Laser Doppler Anemometry, Optics and Laser Technology, 249–261 (December 1974).

    Google Scholar 

  36. H. Mishina, Y. Kawase, T. Asakura, Frequency Error of Doppler Beat Signals due to Extended Scattering Particles, Japanese Journal of Applied Physics, 15: 633–640 (1976).

    Article  ADS  Google Scholar 

  37. Y. Kawase, H. Mishina and T. Asakura, Frequency Error of Doppler Beat Signals due to Extended Scattering Particles: II. Some Additional Considerations and Experimental Verification, Japanese Journal of Applied Physics, 15: 2173–2179 (1976).

    Article  ADS  Google Scholar 

  38. H. Mishina and T. Asakura, Measurement of Velocity Fluctuations in laser Doppler Microscope by the New System Employing the Time-to-Pulse Height Converter, Appl. Phys., 5: 351–359 (1975).

    Article  ADS  Google Scholar 

  39. M. Baker and H. Wayland, On line volume flow rate and velocity measurement for blood in microvessels, Microvascular Research 7: 131–143 (1974).

    Article  Google Scholar 

  40. J.C. Earnshaw, Cytoplasmic motion in Elodea, in: H.Z. Cummins and E.R. Pike, eds., Photon Correlation Spectroscopy and Velocimetry, NATO Advanced Study Institute Series B; Volume 23, Plenum Press, New York and London (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Johnson, R.P.C. (1983). Laser Doppler Microscopy: Especially as a Method for Studying Brownian Motion and Flow in the Sieve Tubes of Plants. In: Earnshaw, J.C., Steer, M.W. (eds) The Application of Laser Light Scattering to the Study of Biological Motion. NATO Advanced Science Institutes Series, vol 59. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4487-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4487-2_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4489-6

  • Online ISBN: 978-1-4684-4487-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics