Skip to main content

Electrophoretic Light Scattering: Modern Methods and Recent Applications to Biological Membranes and Polyelectrolytes

  • Chapter
The Application of Laser Light Scattering to the Study of Biological Motion

Part of the book series: NATO Advanced Science Institutes Series ((NSSA,volume 59))

Abstract

Electrophoretic light scattering (ELS) is simply the application of the laser Doppler principle for automated analytical electrophoresis.1–3 Although the potential power of this approach has been apparent to many workers, both in the fields of electrophoresis and quasi-elastic light scattering (QELS), the technical difficulties of interfacing two complex and unrelated methodologies have discouraged a number of prospective practitioners. The development and publication of a number of technical improvements and successful applications have steadily increased the size of the ELS user community, and in little more than a decade following its invention, the technique is now commercially available and quite widely employed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. R. Ware and W. H. Flygare, Chem. Phys. Lett. 12: 81 (1971).

    Article  ADS  Google Scholar 

  2. B. R. Ware, “The Invention and Development of Electrophoretic Light Scattering” (Ph.D. Thesis, The University of Illinois at Urbana-Champaign, 1972 ).

    Google Scholar 

  3. B. R. Ware, Advan. Colloid Interface Sci. 4: 1 (1974).

    Article  Google Scholar 

  4. B. A. Smith and B. R. Ware, in “Contemporary Topics in Analytical and Clinical Chemistry”, Vol. 2 ( D. M. Hercules, G. M. Hieftje, L. R. Snyder, and M. A. Evenson, eds.), pp. 29–54 ( Plenum, New York, 1978 ).

    Google Scholar 

  5. E. E. Uzgiris, Prog. Surface Sci. 10: 53 (1981).

    Article  ADS  Google Scholar 

  6. E. E. Uzgiris, Advan. Colloid Interface Sci. 14: 75 (1981).

    Article  Google Scholar 

  7. B. R. Ware, in “Biomedical Applications of Laser-Light Scattering” (D. B. Sattelle, B. R. Ware, and W. L. Lee, eds.) ( Elsevier, Amsterdam, 1982 ).

    Google Scholar 

  8. B. R. Ware and D. D. Haas in “Fast Methods in Physical Biochemistry and Cell Biology” (R. Sha’afi and S. Fernandez, eds.) ( Elsevier, Amsterdam, 1982 ).

    Google Scholar 

  9. D. C. Henry, Proc. Royal Soc. A203: 514 (1931).

    Google Scholar 

  10. M. Smoluchowski, Z. Physik. Chem. 92: 129 (1918).

    Google Scholar 

  11. Y. Yeh and H. Z. Cummins, Appl. Phys. Lett. 4: 176 (1964).

    Article  ADS  Google Scholar 

  12. B. M. Watrasiewicz and M. J. Rudd, “Laser Doppler Measurements” ( Butterworths, London, 1976 ).

    Google Scholar 

  13. L. E. Drain, “The Laser Doppler Technique” ( Wiley, New York, 1980 ).

    Google Scholar 

  14. B. R. Ware, in “Chemical and Biochemical Applications of Lasers” (C. B. Moore, ed.), pp. 199–239 ( Academic Press, New York, 1977 ).

    Google Scholar 

  15. H. Z. Cummins and E. R. Pike (editors), “Photon Correlation Spectroscopy and Velocimetry”, NATO Advanced Study Institute, Series B: Physics, Vol. 23 ( Plenum, New York, 1977 ).

    Google Scholar 

  16. D. D. Haas and B. R. Ware, Anal. Biochem. 74: 175 (1976).

    Article  Google Scholar 

  17. K. S. Schmitz, Chem. Phys. Lett. 63: 259 (1979).

    Article  ADS  Google Scholar 

  18. J. D. Harvey, D. F. Walls, and M. W. Woolford, Optics Commun. 18: 367 (1976).

    Article  ADS  Google Scholar 

  19. K. S. Schmitz, Chem. Phys. Lett. 42: 137 (1976).

    Article  ADS  Google Scholar 

  20. T. Yoshimua, A. Kikkawa, and N. Suzuki, Japan. J. Appl. Phys. 11: 1797 (1972).

    Article  Google Scholar 

  21. E. E. Uzgiris, Optics Commun. 6: 55 (1972).

    Article  ADS  Google Scholar 

  22. D. D. Haas and B. R. Ware, Biochemistry, 17: 4946 (1978).

    Article  Google Scholar 

  23. H. R. Petty, R. L. Folger, and B. R. Ware, Cell Biophys. 1: 29 (1979).

    Google Scholar 

  24. H. R. Petty and B. R. Ware, Proc. Natl. Acad. Sci. USA 76: 2278 (1979)•

    Google Scholar 

  25. H. R. Petty, Exptl. Cell Res. 128: 439 (1980).

    Article  Google Scholar 

  26. H. R. Petty and B. R. Ware, Cell Biophys. 3: 19 (1981).

    Article  Google Scholar 

  27. H. R. Petty and B. R. Ware, J. Ultrastruct. Res. 75: 97 (1981).

    Article  Google Scholar 

  28. H. R. Petty, B. R. Ware, and S. I. Wasserman, Biophys. J. 30: 41 (1980).

    Article  Google Scholar 

  29. W. S. Yen, R. W. Mercer, B. R. Ware, and P. B. Dunham, in “Scattering Techniques Applied to Supramolecular and Non-equilibrium Systems”, NATO Advanced Study Institute, Series B: Physics, Vol. 73 ( Plenum, New York, 1981 ), pp. 861–864.

    Book  Google Scholar 

  30. W. S. Yen, R. W. Mercer, B. R. Ware, and P. B. Dunham, Biochim. Biophys. Acta, in press.

    Google Scholar 

  31. G. V. F. Seaman, in “The Red Blood Cell, Vol. II) (D. Surgenor, ed.) ( Academic Press, New York, 1975 ), pp. 1135–1229.

    Google Scholar 

  32. G. S. Manning, Quart. Rev. Biophys. 11 (2): 179 (1978).

    Article  Google Scholar 

  33. G. S. Manning, Accounts Chem. Res. 12: 443 (1979).

    Article  Google Scholar 

  34. H. Magdelénat, P. Turr, P. Tivant, M. Chemla, R. Menez, and M. Drifford, Biopolymers 18: 187 (1979).

    Article  Google Scholar 

  35. J. P. Meullenet, A. Schmitt, and M. Drifford, J. Phys. Chem. 83: 1924 (1979).

    Article  Google Scholar 

  36. T. Yamane and N. Davidson, J. Am. Chem. Soc. 83: 2599 (1961).

    Article  Google Scholar 

  37. W. I. Lee and J. M. Schurr, J. Polym. Sci. 13: 873 (1975).

    Google Scholar 

  38. S.-C. Lin, W. I. Lee, and J. M. Schurr, Biopolymers 17: 1041 (1978).

    Article  Google Scholar 

  39. J. M. Schurr, Chem. Phys. 45: 119 (1980).

    Article  ADS  Google Scholar 

  40. B. R. Ware, Donna Cyr, Sridhar Gorti, and Frederick Lanni, in “Measurement of Suspended Particles by Quasi-Elastic Light Scattering” (B. Dahneke, editor) ( John Wiley and Sons, New York, 1982 ).

    Google Scholar 

  41. M. B. Weissman and B. R. Ware, J. Chem. Phys. 68: 5069 (1978)

    Article  ADS  Google Scholar 

  42. Frederick Lanni and B. R. Ware, Rev. Sci. Instrum., in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Ware, B.R. (1983). Electrophoretic Light Scattering: Modern Methods and Recent Applications to Biological Membranes and Polyelectrolytes. In: Earnshaw, J.C., Steer, M.W. (eds) The Application of Laser Light Scattering to the Study of Biological Motion. NATO Advanced Science Institutes Series, vol 59. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4487-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4487-2_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4489-6

  • Online ISBN: 978-1-4684-4487-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics