Skip to main content

Part of the book series: NATO Advanced Science Institutes Series ((NSSA,volume 59))

Abstract

It has been known since early in this centuryl that the surface of a liquid is continuously disturbed by thermal molecular agitation. The disturbances can be considered as a dynamically evolving Fourier superposition of capillary waves of all wavelengths, excited according to the classical Boltzmann probability factor.2 The amplitude of the waves is typically less than a nanometer, but they act as a weak diffraction grating, scattering light. The capillary waves can be considered to constitute ‘ripplons’ and the scattering process envisaged as

incident photon ± ripplon → scattered photon,

explicitly bringing out the analogy with Brillouin scattering. Early experimental studies2,3 demonstrated the essential correctness of the theoretical arguments. In this early work the intensity and the polarization of the scattered light were investigated. Further progress awaited the advent of the laser, which was necessary for investigations of the spectrum of the scattered light. The review of Langevin4 cites most of the literature prior to 1976; the present paper thus concentrates on work since that date, with particular reference to fluid interfaces or surfaces supporting model biological membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. van Smoluchowski, Ann. Physik 25: 225 (1908).

    Google Scholar 

  2. L. Mandelstam, Ann. Physik 41: 609 (1913).

    Article  ADS  MATH  Google Scholar 

  3. C.V. Raman and L.A. Ramdas, Proc Roy. Soc. Lond. A. 109 150, 272 (1925).

    ADS  Google Scholar 

  4. D. Langevin and J. Meunier, in Photon Correlation Spectroscopy and Ve1oci.metLy edited by H.Z. Cummins and E.R. Pike ( New York, Plenum, 1977 ) p501.

    Google Scholar 

  5. J. Lighthill, Waves in Fluids ( Cambridge, CUP, 1978 ) p221.

    MATH  Google Scholar 

  6. E.H. Lucassen,Reynders and J. Lucassen, Adv. Coll. Interf, Sci. 2: 347 (1969).

    Article  Google Scholar 

  7. P.G. de Gennes and M. Papoular, in Polarization, MatiAre et Rayonnement ( Paris, Presses Universitaires, 1969 ) p243.

    Google Scholar 

  8. A. Vrij, J.G.H. Joosten and H.M. Fijnaut, Adv. Chem. Phys. 48: 329 (1981).

    Article  Google Scholar 

  9. C,H. Sohl and K. Miyano, Phys. Rev. A. 20: 616 (1979). C.H. Sohl, K. Miyano, J.B. Ketterson and G. Wong, Phys. Rey, A. 22: 1256 (1980).

    Article  ADS  Google Scholar 

  10. F.C. Goodrich, Proc. Roy. Soc. Lond. A. 374: 341 (1981).

    Article  ADS  MATH  Google Scholar 

  11. M. Baus, J. Chem. Phys 76: 2003 (1982).

    Google Scholar 

  12. M.A. Bouchiat and D. Langevin, J. Coll. Interf. Sci. 63: 193 (1978).

    Article  Google Scholar 

  13. C.Y. Young and N.A. Clark, J. Chem. Phys. 74: 4171 (1981).

    Article  ADS  Google Scholar 

  14. H. Lamb,Hydrodynamics ( New York, Dover, 1945 ) p 627.

    Google Scholar 

  15. V.G. Levich,Physicochemical Hydrodynamics ( Englewood Cliffs, Prentice-Hall, 1962 ) p603.

    Google Scholar 

  16. R.S. Hansen and J.A. Mann Jr., J. Appl. Phys. 35: 152 (1964).

    Article  ADS  MATH  Google Scholar 

  17. E. Mayer and J.D. Eliassen, J. Coll. Interf. Sci. 37: 228 (1971)

    Article  Google Scholar 

  18. D. Byrne and J.C. Earnshaw, J. Coll. Interf. Sci. 74: 467 (1980).

    Article  Google Scholar 

  19. M.A. Bouchiat and J. Meunier, J. de Phys. 32: 561 (1971).

    Article  Google Scholar 

  20. D. Byrne and J.C. Earnshaw, J. Phys. D. 12: 1133 (1979).

    ADS  Google Scholar 

  21. J.C. Herpin and J. Meunier, J. de Phys. 35: 847 (1974).

    Article  Google Scholar 

  22. D. Langevin and M.A. Bouchiat, C.R.A.S. 272B: 1422 (1971).

    Google Scholar 

  23. D. Langevin and M.A. Bouchiat, J. de Phys. 33: 101 (1972).

    Article  Google Scholar 

  24. J.F. Crilly, PhD. Thesis (Belfast, Queen’s University, 1981). J.F. Crilly and J.C. Earnshaw, to be published.

    Google Scholar 

  25. N.K. Adam and G. Jessop, Proc. Roy. Soc. Lond. A. 112: 362 (1926).

    Article  ADS  Google Scholar 

  26. L. Kramer, J. Chem Phys. 55: 2097 (1971).

    Article  ADS  Google Scholar 

  27. R. Loudon, in Surface Excitations edited by V.M. Agranovich and R. Loudon ÇAmsterdam, North-Holland, to be published).

    Google Scholar 

  28. E.S. Wu and W.W. Webb, Phys. Rev. A. 8: 2077 (1973).

    Article  ADS  Google Scholar 

  29. S. HRrd and R.D. Neuman, J. Coll. Interf. Sci. 83: 315 (1981).

    Article  Google Scholar 

  30. G. Loglio, E. Rillaerts and P. Joos, Coll.and Polymer Sci. 259: 1221 (1981).

    Article  Google Scholar 

  31. L.D. Landau and E.M. Lifschitz, Theory of Elasticity ( Oxford, Permanon Press, 1970 ).

    Google Scholar 

  32. S. Herd, Y. Hamnerius and O. Nilsson, J. Appl, Phys. 47: 2433 (1976).

    Article  ADS  Google Scholar 

  33. G.E. Crawford, J.F. Crilly and J.C. Earnshaw, Farad. Symp. of the Chem. Soc. No 16, to be published (1982).

    Google Scholar 

  34. D. Byrne and J.C. Earnshaw, J. Phys. D. 10: L207 (1977).

    Article  ADS  Google Scholar 

  35. J.A. Stone and W.J. Rice, J. Coll. Interf. Sci. 61: 160 (1977).

    Article  Google Scholar 

  36. J.C. Earnshaw, Nature 292: 138 (1981).

    Article  ADS  Google Scholar 

  37. D. McQueen and I. Lundström, J. Chem. Soc. Faraday Trans. I. 69: 694 (1973).

    Article  Google Scholar 

  38. D. Byrne and J.C. Earnshaw, J. Phys. D. 12: 1145 (1979).

    Article  ADS  Google Scholar 

  39. D. Langevin and C. Griesmar, J. Phys. D. 13: 1189 (1980).

    Article  ADS  Google Scholar 

  40. D. Langevin, J. Coll. Interf. Sci. 80: 412 (1981).

    Article  Google Scholar 

  41. S. Herd and H. Lofgren, J. Coll’. Ìnterf. Sci. 60: 529 (1977).

    Article  Google Scholar 

  42. H. Birecki and N.M. Amer, J. de Phys. 40: C3–433 (1979).

    Google Scholar 

  43. W.J. Moore and H. Eyring, J. Chem. Phys. 6: 391 (1938).

    Article  ADS  Google Scholar 

  44. J. Mingins and J.A.G. Taylor, A manual for the measurement of interfacial tension, pressure and potential at air or non-polar oil/water interfaces ( Port Sunlight, Unilever Research, 1970 ).

    Google Scholar 

  45. J.F. Crilly and J.C. Earnshaw, in Biomedical Applications of Laser Light Scattering edited by D.B. Sattelle, B. Ware and W. Lee (Amsterdam, Elsevier/North-Holland, in the press).

    Google Scholar 

  46. J.C. Earnshaw, to be published.

    Google Scholar 

  47. J.F. Crilly and J.C. Earnshaw, this volume.

    Google Scholar 

  48. E.F. Grabowski and J.A. Cowen, Biophys. J. 18: 23 (1977).

    Article  Google Scholar 

  49. J.F. Crilly and J.C. Earnshaw, Proceedings of the 4th International Conference on Photon Correlation Techniques in Fluid Mechanics (Stanford, Stanford University, 1980 ) p21. 1

    Google Scholar 

  50. G.E. Crawford and J.C. Earnshaw, this volume.

    Google Scholar 

  51. I. Lundström, J. Theor. Biol. 45: 487 (1974).

    Article  Google Scholar 

  52. F. Brochard and J.F Lennon, J. de Phys. 36: 1035 (1975).

    Article  Google Scholar 

  53. F. Brochard, P.G. de Gennes and P. Pfeuty, J. de Phys. 37: 1099 (1976).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Earnshaw, J.C. (1983). Light Scattering by Model Membranes. In: Earnshaw, J.C., Steer, M.W. (eds) The Application of Laser Light Scattering to the Study of Biological Motion. NATO Advanced Science Institutes Series, vol 59. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4487-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4487-2_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4489-6

  • Online ISBN: 978-1-4684-4487-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics