Skip to main content

Crystallographic Studies of the Protein Biosynthesis System

  • Chapter
  • 77 Accesses

Abstract

The protein biosynthesis system provides a very good illustration of the difficulties involved in studying the structure and function of a supramolecular assembly. The complexity of the system and the lack of appropriate experimental tools have forced those in the field to use methods which are less than ideally suited for the problems, as well as to develop new ones.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, M.J., Liljas, A., and Rossmann, M.G., 1973, Functional anion binding sites in dogfish M4 lactate dehydrogenase, J. Mol. Biol., 76:519.

    Article  Google Scholar 

  • Alakhov, Yu., B. and Ovchinnikov, Yu. A., 1981, Study of the structure and structural — functional properties of the elongation factor G from E. coli, Poster abstract from Seventh EMBO Annual Symposium.

    Google Scholar 

  • Appelt, K., Dijk, J., and Epp, D., 1979, The crystallization of protein BL17 from the 50S ribosomal subunit of Bacillus stearothermophilus, FEBS Letters, 103:66.

    Article  Google Scholar 

  • Appelt, K., Dijk, J., Reinhardt, R., Sanhuesa, S., White, S.W., Wilson, K.S., and Yonath, A., 1981, The crystallization of ribosomal proteins from the 50S subunit of the Escherichiacoli and Bacillus stearothermophilus ribosome, J. Biol. Chem., 256:11787.

    Google Scholar 

  • Arnone, A., 1972, X-ray diffraction study of binding of 2,3-diphos-phoglycerate to human deoxyhaemoglobin, Nature, 237:146.

    Article  ADS  Google Scholar 

  • Banner, D.W., Bloomer, A.C., Petsko, G.A., Phillips, D.C., Pogson, C.I., Wilson, I.A., Corran, P.H., Fürth, A.J., Milman, J.D., Offord, R.E., Priddle, J.D., and Waley, S.G., 1975, Structure of chicken muscle triose phosphate isomerase determined crystallographically at 2.5 Å resolution using amino acid sequence data, Nature, 255:609.

    Article  ADS  Google Scholar 

  • Behlke, J., and Gudkov, A.T., 1980, Interaction between the ribosomal proteins L7/L12 and L10 as L7/L12-L10 and L11 from Escherichia coli, Studia Biophysica, 81:169.

    Google Scholar 

  • Blake, C.C.F., Geisow, M.J., Swan, I.D.A., Rerat, C., and Rerat, B., 1974, Structure of human plasma prealbumin at 2.5 Å resolution. A preliminary report on the polypeptide chain conformation, quaternary structure and thyroxine binding, J. Mol. Biol., 88:1.

    Article  Google Scholar 

  • Boublik, M., Hellmann, W., and Kleinschmidt, A.K., 1977, Size and structure of E. coli ribosomes by electron microscopy, Cytobiologie, 14:293.

    Google Scholar 

  • Boublik, M., Hellmann, W., and Roth, H.E., 1976, Localization of ribosomal protein L7/L12 in the 50S subunit of Escherichia coli ribosome by electron microscopy, J. Mol. Biol., 107:479.

    Article  Google Scholar 

  • Brändén, C.-I., Eklund, H., Nordström, B., Boiwe, T., Söderlund, G., Zeppezauer, E., Ohlsson, I., and Åkesson, Å., 1973, Structure of liver alcohol dehydrogenase at 2.9 Å resolution, Proc. Nat. Acad. Sci. USA, 70:293.

    Article  Google Scholar 

  • Buehner, M., Ford, G.C., Moras, D., Olsen, K.W., and Rossmann, M.G., 1974, Three-dimensional structure of D-glyceraldehyde-3 phosphate dehydrogenase, J. Mol. Biol., 90:25.

    Article  Google Scholar 

  • Byers, B., 1971, Chick embryo ribosome crystals: analysis of bonding and functional activity in vitro, Proc. Nat. Acad. Sci. USA, 68:440.

    Article  ADS  Google Scholar 

  • Clark, M.W., Hammons, M., Langer, M., and Lake, J.A., 1979, Helical arrays of Escherichia coli small ribosomal subunits produced in vitro, J. Mol. Biol., 135:507.

    Article  Google Scholar 

  • Crowther, R.A., and Klug, A., 1975, Structural analysis of macro-molecular assemblies by image reconstruction from electron micrographs, Ann. Rev. Biochem., 44:161.

    Article  Google Scholar 

  • Dabbs, E.R., 1977, A spectomycin dependent mutant of Escherichia coli, Mol. Gen. Genet., 151:261.

    Article  ADS  Google Scholar 

  • Dabbs, E.R., 1979, Selection for Escherichia coli mutants with proteins missing from the ribosome, J. Bact., 140:734.

    Google Scholar 

  • Dabbs, E.R., Ehrlich, R., Hasenbank, R., Schroeter, B.-H., Stoffler-Meilicke, M., and Stöffler, G., 1981, Mutants of Escherichia coli lacking ribosomal protein L1, J. Mol. Biol., 149:553.

    Article  Google Scholar 

  • Dijk, J., Garrett, R.A., and Müller, R., 1979, Studies on the binding of the ribosomal protein complex L7/L12-L10 and protein L11 to the 5′-one third of 23S RNA: a functional centre of the 50S subunit, Nucl. Acids Res., 6:2717.

    Article  Google Scholar 

  • Dijk, J. and Littlechild, J., 1979, Purification of ribosomal proteins from Escherichia coli under nondenaturing conditions, Methods in Enzymology, 59:481.

    Article  Google Scholar 

  • Duffy, L.K., Gerber, L., Johnson, A.E., and Miller, D.L., 1981, Identification of a histidine residue near the aminoacyl transfer ribonucleic acid binding site of elongation factor Tu, Biochemistry, 20:4663.

    Article  Google Scholar 

  • Duisterwinkel, F.J., De Graaf, J.M., Kraal, B., and Bosch, L., 1981, A kirromycin resistant elongation factor EF-Tu from Escherichia coli contains a threonine instead of an alanine residue in position 375, FEBS Lett., 131:89.

    Article  Google Scholar 

  • Expert-Bezançon, A., Barritault, D., Milet, M., and Hayes, D.H., 1976, Close proximity of Escherichia coli 50S subunit proteins L7/L12 and L10 and Lll, J. Mol. Biol., 108:781.

    Article  Google Scholar 

  • Fahnestock, S.R., Strycharz, W.A., and Marquis, D.M., 1981, Immunochemi cal evidence of homologies among 50S ribosomal proteins of Bacillus stearothermophilus and Escherichia coli, J. Biol. Chem., 256:10111.

    Google Scholar 

  • Garrett, R.A., Douthwaite, S., and Noller, H.F., 1981, Structure and role of 5S RNA-protein complexes in protein biosynthesis, TIBS, 6:137.

    Google Scholar 

  • Gast, W.H., Kabsch, W., Wittinghofer, A., and Lebermann, R., 1977, Crystals of a large tryptic peptide (fragment A) of elongation factor EF-Tu from Escherichia coli, FEBS Letters, 74:88.

    Article  Google Scholar 

  • Gast, W.H., Lebermann, R., Schulz, G.E., and Wittinghofer, A., 1976, Crystals of partially trypsin-digested elongation factor Tu, J. Mol. Biol., 106:943.

    Article  Google Scholar 

  • Glick, B.R., 1977, The role of Escherichia coli ribosomal proteins L7 and L12 in peptide chain propagation, FEBS Lett., 73:1.

    Article  Google Scholar 

  • Gudkov, A.T. and Behlke, J., 1978, The N-terminal sequence protein of L7/L12 is responsible for its dimerization, Eur. J. Biochem., 90:309.

    Article  Google Scholar 

  • Gudkov, A.T., Tumanova, L.G., Gongadze, G.M., and Bushnev, V.N., 1980, Role of different regions of ribosomal proteins L7 and L10 in their complex formation and in the interaction with the ribosomal 50S subunit, FEBS Lett., 109:34.

    Article  Google Scholar 

  • Hamel, E., Koka, M., and Nakamoto, T., 1972, Requirement of an Escherichia coli 50S ribosomal protein component for effective interaction of the ribosome with T and G factors and with guanosine triphosphate, J. Biol. Chem., 247:805.

    Google Scholar 

  • Hardy, S.J.S., 1975, The stoichiometry of the ribosomal proteins of Escherichia coli, Mol. Gen. Genet., 140:253.

    Article  Google Scholar 

  • Henderson, R., and Unwin, P.N.T., 1975, Three-dimensional model of purple membrane obtained by electron microscopy, Nature, 257:28.

    Article  ADS  Google Scholar 

  • Highland, J.H., and Howard, G.A., 1975, Assembly of ribosomal proteins L7, L10, L11 and L12 on the 50S subunit of Escherichia coli, J. Biol. Chem., 250:831.

    Google Scholar 

  • Itoh, T., 1981, Primary structure of an acidic ribosomal protein from Micrococcus lysodeikticus, FEBS Lett., 127:67.

    Article  Google Scholar 

  • Itoh, T., Sugiyama, M., and Higo, K., 1981, The primary structure of an acidic ribosomal protein from Streptomyces griseus, Biochim. Biophys. Acta, in press.

    Google Scholar 

  • Ivell, R., Fasano, O., Crechet, J.B., and Parmeggiani, A., 1981, Characterization of a kirromycin-resistant elongation factor Tu from Escherichia coli, Biochemistry, 20:1355.

    Article  Google Scholar 

  • Jelenc, P.C., 1980, Rapid purification of highly active ribosomes from Escherichia coli, Anal. Biochem., 105:369.

    Article  Google Scholar 

  • Jelenc, P.C., and Kurland, C.G., 1979, Nucleotide triphosphate regeneration decreases the frequency of translation errors, Proc. Nat. Acad. Sci. USA, 76:3174.

    Article  ADS  Google Scholar 

  • Jonák, J., Rychlík, I., Smrt, J., and Holý, A., 1979, The binding site for the 3′-terminus of aminoacyl-tRNA in the molecule of elongation factor Tu from Escherichia coli, FEBS Lett., 98:329.

    Article  Google Scholar 

  • Jones, M.D., Petersen, T.E., Nielsen, K.M., Magnusson, S., Sottrup-Jensen, L., Gausing, K., and Clark, B.F.C., 1980, The complete amino-acid sequence of elongation factor Tu from Escherichia coli, Eur. J. Biochem., 108:507.

    Article  Google Scholar 

  • Jurnak, F., McPherson, A., Wang, A.H.J., Rich, A., 1980, Biochemical and structural studies of the tetragonal crystalline modification of the Escherichia coli elongation factor Tu, J. Biol. Chem., 255:6751.

    Google Scholar 

  • Jurnak, F., Rich, A., and Miller, D., 1977, Preliminary X-ray diffraction data for tetragonal crystals of trypsinized Escherichia coli elongation factor, J. Mol. Biol., 115:103.

    Article  Google Scholar 

  • Kabsch, W., Gast, W.H., Schulz, G.E., Lebermann, R., 1977, Low resolution structure of partially trypsin-degraded polypeptide elongation factor, EF-Tu, from Escherichia coli, J. Mol. Biol., 117:999.

    Google Scholar 

  • Kahan, L., Winkelmann, D.A., and Lake, J.A., 1981, Ribosomal proteins S3, S6, S8 and S10 of Escherichia coli localized on the external surface of the small subunit by immune electron-microscopy, J. Mol. Biol., 145:193.

    Article  Google Scholar 

  • Kastner, B., Stöffler-Meilicke, M., and Stöffler, G., 1981, Arrangement of the subunits in the ribosome of Escherichia coli: demonstration by immunoelectron microscopy, Proc. Nat. Acad. Sci. USA, 78:6652.

    Article  ADS  Google Scholar 

  • Kaziro, Y., 1978, The role of guanosine 5′-triphosphate in polypeptide chain elongation, Biochim. Biophys. Acta, 505:95.

    Google Scholar 

  • Kenny, J.W., and Traut, R.R., 1979, Identification of fifteen neighbouring protein pairs in the Escherichia coli 50S ribosomal subunit crosslinked with 2-iminothiolane, J. Mol. Biol., 127:243.

    Article  Google Scholar 

  • Kingsbury, E.W., and Voelz, H., 1969, Induction of helical arrays of ribosomes by vinblastine sulfate in Escherichia coli, Science, 165-768.

    Google Scholar 

  • Koteliansky, V.E., Domogatsky, S.P., and Gudkov, A.T., 1978, Dimer state of protein L7/L12 and EF-G dependent reactions on ribosomes, Eur. J. Biochem., 90:319.

    Article  Google Scholar 

  • Koteliansky, V.E., Domogatsky, S.P., Gudkov, A.T., and Spirin, A.S., 1977, Elongation factor-dependent reactions on ribosomes deprived of proteins L7 and L12, FEBS Lett., 73:6.

    Article  Google Scholar 

  • Kurland, C.G., 1982, Translational accuracy in vitro, in press.

    Google Scholar 

  • Lake, J.A., 1976, Ribosome structure determined by electron microscopy of Escherichia coli small subunits, large subunits and monomeric ribosomes, J. Mol. Biol., 105:131.

    Article  Google Scholar 

  • Lake, J.A., 1978, Electron microscopy of specific proteins: three-dimensional mapping of ribosomal proteins using antibody labels, in: “Advanced Techniques in Biological Electron Microscopy II”, J.K. Koehler, ed., Springer Verlag, Berlin, Heidelberg, p. 173.

    Chapter  Google Scholar 

  • Lake, J.A., 1981, The ribosome, Scientific American, 245:56.

    Article  Google Scholar 

  • Lake, J. A., Nonomura, Y., and Sabatini, D.D., 1974, Ribosome structure as studied by electron microscopy, in: “Ribosomes”, M. Nomura, A. Tissiere, P. Lengyel, eds., Cold Spring Harbor Laboratory, Long Island, N.Y., p. 543.

    Google Scholar 

  • Lake, J.A., and Slayter, H.S., 1972, Three-dimensional structure of the chromatoid body helix of Entamoeba invadens, J. Mol. Biol., 66:271.

    Article  Google Scholar 

  • Laursen, R.A., L’Italien, J.J., Nagarkatti, S., and Miller, D.L., 1981, The amino acid sequence of elongation factor Tu of Escherichia coli. The complete sequence, J. Biol. Chem., 256:8102.

    Google Scholar 

  • Labermann, R., Schulz, G.E., and Suck, D., 1981. Crystallization and preliminary X-ray diffraction data of the EF-Tu·EF-Ts (EF-T) complex of Escherichia coli, FEBS Lett., 124:279.

    Article  Google Scholar 

  • Lebermann, R., Wittinghofer, A., and Schulz, G.E., 1976, Polymorphism in crystalline elongation factor Tu·GDP from Escherichia coli, J. Mol. Biol., 106:951.

    Article  Google Scholar 

  • Lee, C.C., Cantor, C.R., and Wittmann-Liebold, B., 1981, The number of copies of ribosome-bound proteins L7 and L12 required for protein synthesis activity, J. Biol. Chem., 256:41.

    Google Scholar 

  • Leijonmarck, M., Eriksson, S., and Liljas, A., 1980, Crystal structure of a ribosomal component at 2.6 A resolution, Nature, 286:824.

    Article  ADS  Google Scholar 

  • Leijonmarck, M., and Liljas, A., 1982, Manuscript in preparation.

    Google Scholar 

  • Liljas, A., 1982, Structural studies of ribosome, Progr. Biophys. Mol. Biol., in press.

    Google Scholar 

  • Liljas, A., Eriksson, S., Donner, D., and Kurland, C.G., 1978, Isolation and crystallization of stable domains of the protein L7/L12 from Escherichia coli ribosomes, FEBS Letters, 88:300.

    Article  Google Scholar 

  • Liljas, A., and Kurland, C.G., 1976, Crystallization of ribosomal protein L7/L12 from Escherichia coli, FEBS Lett., 71:130.

    Article  Google Scholar 

  • Liljas, A., and Newcomer, M.E., 1981, Purification and crystallization of a protein complex from Bacillus stearothermophilus ribosomes, J. Mol. Biol., 153, in press.

    Google Scholar 

  • Maassen, J.A. and Möller, W., 1974, Identification by photo-affinity labelling of the proteins in Escherichia coli ribosomes involved in elongation factor G-dependent GDP binding, Proc. Nat. Acat. Sci. USA, 71:1277.

    Article  ADS  Google Scholar 

  • Maassen, J.A., and Möller, W., 1978, Elongation factor G-dependent binding of a photoreactive GTP analogue of Escherichia coli ribosomes result in labelling of protein L11, J. Biol. Chem., 253:2777.

    Google Scholar 

  • Maassen, J.A., and Möller, W., 1981, Photochemical cross-linking of elongation factor G to 70S ribosomes from Escherichia coli by 4-(6-formyl-3-azidophenoxy)-butyrimidate, Eur. J. Biochem., 115:279.

    Article  Google Scholar 

  • Maassen, J.A., Shop, E.N., and Möller, W., 1981, Structural analysis of ribosomal protein L7/L12 by the heterobifunctional crosslinker 4-(6-formyl-3-azidophenoxy)-butyrimidate, Biochemistry, 20:1020.

    Article  Google Scholar 

  • Marquis, D.M., and Fahnestock, S.R., 1980, Stoichiometry and structure of a complex of acidic ribosomal proteins, J. Mol. Biol., 142:161.

    Article  Google Scholar 

  • Marquis, D.M., Fahnestock, S.R., Henderson, E., Woo, D., Schwinge, S., Clark, M.W., and Lake, J.A., 1981, The L7/L12 stalk, a conserved feature of the procaryotic ribosome, is attached to the large subunit through its N-terminus, J. Mol. Biol., 150:121.

    Article  Google Scholar 

  • Matheson, A.T., Möller, W., Amons, R., and Yaguchi, M., 1980, Comparative studies on the structure of ribosomal proteins, with emphasis on the alanine-rich acidic ribosomal, “A” protein, in: “Ribosome Structure, Function and Genetics”, G. Chambliss, G.R. Craven, J. Davies, K. Davis, L. Kahan, and M. Nomura, eds., University Park Press, Baltimore, p. 297.

    Google Scholar 

  • McPherson, A., Jr., 1976, The growth and preliminary investigation of protein and nucleic acid crystals for X-ray diffraction analysis, Methods of Biochemical Analysis, 23:249.

    Article  Google Scholar 

  • Morikava, K., La Cour, T.F.M., Nyborg, J., Rasmussen, K.M., Miller, D.L., and Clark, B.F.C., 1978, High resolution X-ray crystallographic analysis of a modified form of the elongation factor Tu: Guanosine Diphosphate complex, J. Mol. Biol., 125:325.

    Article  Google Scholar 

  • O’Brien, L., Shelly, K., Towfighi, J., and McPherson, A., 1980, Crystalline ribosomes are present in brains from senile humans, Proc. Nat. Acad. Sci. USA, 77:2260.

    Article  ADS  Google Scholar 

  • Osterberg, R., Sjöberg, B., Liljas, A., and Pettersson, I., 1976, Small-angle X-ray scattering and crosslinking study of the proteins L7/L12 from Escherichia coli ribosomes, FEBS Lett., 66:48.

    Article  Google Scholar 

  • Osterberg, R., Sjöberg, B., Pettersson, I., Liljas, A., and Kurland, C.G., 1977, Small-angle X-ray scattering study of the protein complex of L7/L12 and L10 from Escherichia coli ribosomes, FEBS Lett., 73:22.

    Article  Google Scholar 

  • Pettersson, I., and Kurland, C.G., 1980, Ribosomal protein L7/L12 is required for optimal translation, Proc. Nat. Acad. Sci. USA, 77:4007.

    Article  ADS  Google Scholar 

  • Pettersson, I., and Liljas, A., 1979, The stoichiometry and reconstitution of a stable protein complex from Escherichia coli ribosomes, FEBS Lett., 98:139.

    Article  Google Scholar 

  • Ramakrishnan, V.R., Yabuki, S., Sillers, I.-Y., Schindler, D.G., Engelman, D.M., and Moore, P.B., 1981, On the position of S6, S11 and S15 in the 30S ribosomal subunit of E. coli, J. Mol. Biol., in press.

    Google Scholar 

  • Reeke, G.N., Becker, J.W., and Edelman, G.M., 1975, The covalent and threedimensional structure of concanavalin A. IV. Atomic coordinates, hydrogen bonding and quaternary structure, J. Biol. Chem., 250:1525.

    Google Scholar 

  • Rossmann, M.G., and Argos, P., 1981, Protein folding, Ann. Rev. Biochem., 50:497.

    Article  Google Scholar 

  • Rossmann, M.G., Liljas, A., Brändén, C.I., and Banaszak, L.J., 1975, Evolutionary and structural relationships among dehydrogenases, in: “The Enzymes”, P.D. Boyer, ed., Academic Press, London, LL:61.

    Google Scholar 

  • Rubin, J.R., Morikawa, K., Nyborg, J., La Cour, T.F.M., Clark, B. F.C., and Miller, D.L., 1981, Structural features of the GDP binding site of elongation factor Tu from Escherichia coli as determined by X-ray diffraction, FEBS Lett., 129:177.

    Article  Google Scholar 

  • Schrier, P.I., and Möller, W., 1975, The involvement of 50S ribosomal protein L11 in the EF-G dependent GTP hydrolysis of E. coli ribosomes, FEBS Lett., 54:130.

    Article  Google Scholar 

  • Shatsky, I.N., Estafieva, A.G., Bystrova, T.F., Bogdanov, A.A., and Vasiliev, V.D., 1980, Topography of RNA in the ribosome: Location of the 3′-end of 5S RNA on the central protuberance of the 50S subunit, FEBS Lett., 121:97.

    Article  Google Scholar 

  • Sneden, D., Miller, D.L., Kim, S.H., and Rich, A., 1973, Preliminary X-ray analysis of the crystalline complex between polypeptide chain elongation factor Tu, and GDP, Nature, 241:530.

    Article  ADS  Google Scholar 

  • Stark, M.J.R. and Cundliffe, E., 1979, On the biological role of ribosomal protein BM-L11 of Bacillus megaterium homologous with Escherichia coli ribosomal protein L11, J. Mol. Biol., 134:767.

    Article  Google Scholar 

  • Stoffler, G., Bald, R., Kastner, B., Lührmann, R., Stöffler-Meilicke, M., and Tischendorf, G., 1980a, Structural organization of the Escherichia coli ribosome and localization of functional domain, in: “Ribosomes. Structure, Function and Genetics”, G. Chambliss, G.R. Craven, J. Davies, K. Davis, L. Kahan, and M. Nomura, eds., University Park Press, Baltimore.

    Google Scholar 

  • Stöffler, G., Cundliffe, E., Stöffler-Meilicke, M., and Dabbs, E. R., 1980b, Mutants of Escherichia coli lacking ribosomal protein L11, J. Biol. Chem., 255:10517.

    Google Scholar 

  • Stöffler, G., and Stöffler-Meilicke, M., 1981, Structural organization of the Escherichia coli ribosomes and localization of functional domains, in: “International Cell Biology 1980–1981”, H.G. Schweiger, ed., Springer, New York, p. 93.

    Chapter  Google Scholar 

  • Steitz, T.A., Anderson, W.F., Fletterick, R.J., and Anderson, C.M., 1977, High resolution crystal structures of yeast hexokinase complexes with substrates, activators and inhibitors. Evidence for an allosteric control site, J. Biol. Chem., 252:4494.

    Google Scholar 

  • Strycharz, W.A., Nomura, M., and Lake, J.A., 1978, Ribosomal proteins L7/L12 localized at a single region of the large subunit by immune electron microscopy, J. Mol. Biol., 126:123.

    Article  Google Scholar 

  • Subramanian, A.R., 1975, Copies of proteins L7 and L12 and heterogeneity of the large subunit of Escherichia coli ribosome, J. Mol. Biol., 95:1.

    Article  Google Scholar 

  • Taddei, C., 1972, Ribosome arrangement during oogenesis of Lacerta sicula Raf., Exp. Cell. Res., 70:285.

    Article  Google Scholar 

  • Terhorst, C., Möller, W., Laursen, R., Wittmann-Liebold, B., 1973, The primary structure of an acidic protein from 50S ribosomes of Escherichia coli which is involved in GTP hydrolysis dependent on elongation factors G and T, Eur. J. Biochem., 34:138.

    Article  Google Scholar 

  • Tischendorf, G.W., Zeichhardt, H., and Stöffler, G., 1975, Architecture of the Escherichia coli ribosome as determined by immune electron microscopy, Proc. Nat. Acad. Sci. USA, 72:4820.

    Article  ADS  Google Scholar 

  • Tokimatsu, H., Strycharz, W.A., and Dahlberg, A.E., 1981, Gel electrophoretic studies on ribosomal proteins L7/L12 and the Escherichia coli 50S subunit, J. Mol. Biol., 152:397.

    Article  Google Scholar 

  • Unwin, N., 1977, Three-dimensional model of membrane-bound ribosomes obtained by electron microscopy, Nature, 269:118.

    Article  ADS  Google Scholar 

  • Unwin, N., 1979, Attachment of ribosome crystal to intracellular membranes, J. Mol. Biol., 132:69.

    Article  Google Scholar 

  • Van Agthoven, A.J., Maassen, J.A., Schrier, P.I., and Möller, W., 1975, Inhibition of EF-G dependent GTPase by an aminoterminal fragment of L7/L12, Biochem. Biophys. Res. Commun., 64:1184.

    Article  Google Scholar 

  • Weissbach, H., 1980, Soluble factors in protein synthesis, in: “Ribosomes. Structure, Function and Genetics”, G. Chambliss, G.R. Craven, J. Davies, K. Davis, L. Kahan, and M. Nomura, eds., University Park Press, Baltimore, p. 377.

    Google Scholar 

  • Wolf, H., Chinali, G., and Parmeggiani, A., 1974, Kirromycin, an inhibition of protein biosynthesis that acts on elongation factor Tu, Proc. Nat. Acad. Sci. USA, 71:4910.

    Article  ADS  Google Scholar 

  • Yonath, A.E., Müssig, J., Tesche, B., Lorenz, S., Erdmann, V.A., and Wittmann, H.G., 1980, Crystallization of the large ribosomal subunits from Bacillus stearothermophilus, Biochem. Internat., 1:428.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Liljas, A., Leijonmarck, M. (1983). Crystallographic Studies of the Protein Biosynthesis System. In: Pifat, G., Herak, J.N. (eds) Supramolecular Structure and Function. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4478-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4478-0_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4480-3

  • Online ISBN: 978-1-4684-4478-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics