Regional Distribution of Choline Acetyltransferase Activity and Multiple Affinity forms of the Muscarinic Receptor in Heart

  • Robert RoskoskiJr.
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 161)


The autonomic nervous system plays an important role in the regulation of the heart. The parasympathetic division decreases heart rate and contractility while the sympathetic division mediates the opposite responses. The parasympathetic effect predominates at rest and provides tonic inhibitory influences. The parasympathetic system also predominates when both divisions are maximally stimulated (1). The preganglionic component of the parasympathetic system originates in the dorsal motor nucleus of the brain stem and courses to the heart through the vagus nerves. Postganglionic (intrinsic) neurons originate and terminate within the heart. Acetylcholine is the neurotransmitter of both the preganglionic and postganglionic divisions of the parasympathetic system. The response between the pre- and postganglionic neurons is mediated by the cholinergic nicotinic receptor. The postganglionic neurons interact with the myocardium and its specialized pacemaker tissue by means of the cholinergic muscarinic receptor. Choline acetyltransferase activity in heart is a neurochemical marker of both the pre- and postganglionic neurons of the parasympathetic system in unknown proportion.


Tyrosine Hydroxylase Muscarinic Receptor Choline Acetyltransferase Cholinergic Muscarinic Receptor Parasympathetic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.N. Levy, Parasympathetic control of the heart. In: Neural regulation of the heart. W.C. Randall, ed., pp. 95–129 New York: Oxford University Press (1977).Google Scholar
  2. 2.
    R. Roskoski, Jr., H.E. Mayer, and P.G. Schmid, Choline acetyltransferase activity in guinea pig heart in vitro. J. Neurochem. 23:1197 (1974).PubMedCrossRefGoogle Scholar
  3. 3.
    P.B. Molinoff, and J. Axelrod, Biochemistry of Catechola mines. Ann. Rev. Biochem. 40:465 (1971).PubMedCrossRefGoogle Scholar
  4. 4.
    Potter, L.T., Acetylcholine in Handbook of Neurochemistry. Vol IV, A. Lajtha ed., New York, Plenum Press, pp 263–284 (1970).Google Scholar
  5. 5.
    R. Roskoski, Jr., R. McDonald, L.M. Roskoski, W. Marvin, K. Hermsmayer, Choline acetyltransferase activity in Heart: Evidence for neuronal and not myocardial origin. Am. J. Physiol. 233:H642 (1977).PubMedGoogle Scholar
  6. 6.
    W.J. Marvin, Jr., K. Hermsmeyer, R.I. McDonald, L.M. Roskoski, and R. Roskoski, Jr., Ontogenesis of cholinergic innervation in the rat heart. Circ. Res. 46:690 (1980).PubMedGoogle Scholar
  7. 7.
    D.D. Lund, P.G. Schmid, S.E. Kelly, R.J. Corry, and R. Roskoski, Jr., Choline acetyltransferase activity in rat heart after transplantation. Am. J. Physiol. 235:H367 (1978).PubMedGoogle Scholar
  8. 8.
    D.D. Lund, P.G. Schmid, and R. Roskoski, Jr., Choline acetyltransferase activity in rat and guinea pig heart following vagotomy. Am. J. Physiol. H620 (1974).Google Scholar
  9. 9.
    J.T. Coyle, Tyrosine Hydroxylase in rat brain. Biochem. Pharmacol. 21:1935 (1972).PubMedCrossRefGoogle Scholar
  10. 10.
    J.T. Coyle, and J. Axelrod, Dopamine -hydroxylase in the rat brain: Developmental characteristics. J. Neurochem. 19:449 (1972).PubMedCrossRefGoogle Scholar
  11. 11.
    R.H. Anderson, The disposition, morphology and innervation of cardiac specialized tissue in the guinea pig. J. Anat. 111:453 (1972).PubMedGoogle Scholar
  12. 12.
    L.H. Crockatt, D.D. Lund, P.G. Schmid, and R. Roskoski, Jr., Hypoxia-induced changes in parasympathetic neurochemical markers in guinea pig heart. J. Appl. Physiol. 50:1017 (1981).PubMedGoogle Scholar
  13. 13.
    P.G. Schmid, B.J. Greif, D.D. Lund, and R. Roskoski, Jr., Regional Choline Acetyltransferase Activity in the Guinea Pig Heart. Circ. Res. 42:657 (1978).PubMedGoogle Scholar
  14. 14.
    Dickson, D.W., Lund, D.D., Subieta, A.R., Prall, J.L., Schmid, P.G., Roskoski, R. Jr., Regional Distribution of Tyrosine Hydroxylase and Dopamine B-Hydroxylase Activities in Guinea Pig Heart, J. Autonomic Nervous System, 4:319–326 (1981).CrossRefGoogle Scholar
  15. 15.
    T.N. James, The connecting pathways between the sinus node and the A-V node and between the right and left atrium in the human heart. Am. Heart J. 66:498 (1963).PubMedCrossRefGoogle Scholar
  16. 16.
    T.N. James, Cardiac innervation: Anatomic and pharmacologic relations. Bull. N.Y. Acad. Med. 43:1041 (1967).PubMedGoogle Scholar
  17. 17.
    D.V. Priola, and R.L. Fulton, Positive and negative inotropic responses of the atria and ventricles to vagosympathetic stimulation in the isovolumic canine heart. Circ. Res. 25:265 (1969).PubMedGoogle Scholar
  18. 18.
    D.D. Lund, P.G. Schmid, U.J. Johannsen, and R. Roskoski, Jr., Biochemical indices of cholinergic and adrenergic autonomic innervation in chronic right heart failure. J. Mol. Cell Cardiol. in press.Google Scholar
  19. 19.
    P. Toscano, and L.T. Potter, Distribution of muscarinic receptors (MR) in relation to choline acetyltrans-ferase in the human heart. Fed. Proc. 41:1327.Google Scholar
  20. 20.
    W.C. Randall, Sympathetic control of the heart. In: Neural regulation of the heart, W.C. Randall, ed., pp. 43–94. New York, Oxford University Press (1977).Google Scholar
  21. 21.
    W. Lovenberg, E.A. Bruckwick, and I. Hambauer, ATP, Cyclic AMP and magnesium increase the activity of rat striatal tyrosine hydroxylase for its cofactor. Proc. Natl. Acad. Sci. (U.S.A.). 72:2955 (1975).CrossRefGoogle Scholar
  22. 22.
    J.Z. Fields, W.R. Roeske, E. Morkin and H.I. Yamamura, Cardiac Muscarinic Cholinergic Receptor., J. Biol. Chem. 253:3251 (1978).PubMedGoogle Scholar
  23. 23.
    N.J.M. Birdsall, A.S.V. Burgen, and E.G. Hulme, The binding of agonists to brain muscarinic receptors. Mol. Pharmacol. 14:723 (1978).PubMedGoogle Scholar
  24. 24.
    M. Rodbell, The role of hormone receptor and GTP-regulatory proteins in membrane transduction. Nature 284:17 (1980).PubMedCrossRefGoogle Scholar
  25. 25.
    L.E. Limbird, Activation and attenuation of adenylate cyclase. Biochem. J. 195:1 (1981).PubMedGoogle Scholar
  26. 26.
    W.H. Enseleit, R.G. Bassett, Jr. and R. Roskoski, Jr., Modification of muscarinic receptor-ligand binding in the rat heart by 5’-guanylylimidodiphosphate, Fed. Proc. 41:1211 (1982).Google Scholar
  27. 27.
    H.E. Morgan, B.H.L. Chua, and E.O. Fuller, Regulation of protein synthesis and degradation during in vitro cardiac work. Am. J. Physiol. 238:E431 (1980).PubMedGoogle Scholar
  28. 28.
    J.B. Galper, and T.W. Smith, Properties of muscarinic acetylcholine receptors in heart cell cultures. Proc. Natl. Acad. Sci. (U.S.A.). 75:5831 (1978).CrossRefGoogle Scholar
  29. 29.
    R.G. Simon, and W.L. Klein, Cholinergic activity regulates muscarinic receptors in central nervous system cultures. Proc. Natl. Acad. Sci. (U.S.A.) 76:4141 (1979).CrossRefGoogle Scholar
  30. 30.
    R.R. Reinhardt, and R. Roskoski, Jr., Methacholine induced decrease of the cholinergic muscarinic receptor in the perfused working rat heart. Fed. Proc. 41:898 (1982).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Robert RoskoskiJr.
    • 1
  1. 1.Department of BiochemistryLouisiana State University Medical CenterNew OrleansUSA

Personalised recommendations