Skip to main content

A Model Study of the Effect of the Intercalated Discs on Discontinuous Propagation in Cardiac Muscle

  • Chapter
Myocardial Injury

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 161))

Abstract

There is considerable evidence (1,13,14,22,23) to support the existence of low resistance end-to-end junctions (gap junctions or connexons (10,12,17) which lie in the intercalated discs that make up the associated end-to-end plasma membranes of cardiac muscle cells. Even though these gap junctions are low resistance, they represent a significant discontinuity in the conductive medium. Indeed, while these low resistance contacts are low in the sense of permitting an adequate current to flow and excite the postjunctional cell, an often quoted value for the intercalated disc resistance, 1 ohm-cm2, would be an impediment to axial current flow comparable to the entire myoplasm of the cell. In order to study the effects of these discontinuities due to the intercalated discs on propagation in cardiac muscle a “microscopic” discontinuous cable model which includes the intercalated discs was developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barr, L., M.M. Dewey and W. Berger. Propagation of action potentials and the structure of the nexus in cardiac muscle. J. Gen. Physiol. 48:797–823, 1965.

    Article  PubMed  CAS  Google Scholar 

  2. Beeler, G.W. and H. Reuter. Reconstruction of the action potential of ventricular myocardial fibres. J. Physiol. London 286:177–210, 1977.

    Google Scholar 

  3. Chapman, R.A. and C.H. Fry. An analysis of the cable properties of frog ventricular myocardium. J. Physiol. London 283:263–281, 1978.

    PubMed  CAS  Google Scholar 

  4. Clerc, L. Directional differences of impulse spread in trabecular muscle from mammalian heart. J. Physiol. London 255:335–346, 1976.

    PubMed  CAS  Google Scholar 

  5. Crank, J. and P. Nicolson. A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type. Proc. Cambridge Phil. Soc. 43:50–77, 1947.

    Article  Google Scholar 

  6. Heppner, D.B. and R. Plonsey. Simulation of electrical interaction of cardiac cells. Biophys J. 10:1057–1075, 1970.

    Article  PubMed  CAS  Google Scholar 

  7. Hodgkin, A.L. and Huxley, A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. London 117:500–544, 1952.

    PubMed  CAS  Google Scholar 

  8. Lowenstein, W.R. Junctional intercellular communication: The cell-to-cell membrane channel. Physiol. Rev. 61:829–913, 1981.

    Google Scholar 

  9. McAllister, R.E., D. Noble and R.W. Tsien. Reconstruction of the electrical activity of cardiac Purkinje fibers. J. Physiol. London 251:1–59, 1975.

    PubMed  CAS  Google Scholar 

  10. McNutt, N.S. and R.S. Weinstein. Membrane ultrastructure at mammalian intercellular junctions. Prog. Biophys. Mol. Biol. 26:45–101, 1973.

    Article  PubMed  CAS  Google Scholar 

  11. Miller, W.T. III and D.B. Geselowitz. Simulation studies of the electrocardiogram: I.The normal heart. Circ. Res. 43:301–323, 1978.

    PubMed  CAS  Google Scholar 

  12. Page, E. and L.P. McAllister. Studies on the intercalated discs of rat ventricular myocardial cells. J. Ultrastruct. Res. 43:388–411, 1973.

    Article  PubMed  CAS  Google Scholar 

  13. Page, E. and Y. Shibata. Permeable junctions between cardiac cells. Ann. Rev. Physiol. 43:431–442, 1981.

    Article  CAS  Google Scholar 

  14. Pollack, G.H. Intercellular coupling in the atrioventricular node and other tissues of the rabbit heart. J. Physiol. London 255: 275–298, 1976.

    PubMed  CAS  Google Scholar 

  15. Plonsey, R. Action potential sources and their volume conductor fields. Proc. IEEE 65:601–611, 1976.

    Article  Google Scholar 

  16. Plonsey, R. and Y. Rudy. Electrocardiogram sources in a two dimensional anisotropic activation model. Med. Biol. Engr. Comput. 18:87–95, 1980.

    Article  CAS  Google Scholar 

  17. Revel, J.P. and M.J. Karnovsky. Hexagonal arrays of subunits in intercellular junctions of the mouse heart and liver. J. Cell Biol. 12:571–588, 1962.

    Article  PubMed  CAS  Google Scholar 

  18. Rush, S. and H. Larsen . A practical algorithm for solving dynamic membrane equations. IEEE BME 25:389–392, 1978.

    Article  CAS  Google Scholar 

  19. Sharp, G. and Joyner, R.W. Simulated propagation of cardiac action potentials. Biophysical J. 31:403–424, 1980.

    Article  CAS  Google Scholar 

  20. Spach, M.S., W.T. Miller III, D.B. Geselowitz, R.C. Barr, J.M. Kootsey and E.A. Johnson. The discontinuous nature of propagation in normal cardiac muscle: Evidence for recurrent discontinuities of intra-cellular resistance that affect the membrane currents. Circulation Res. 48:39–56, 1981.

    PubMed  CAS  Google Scholar 

  21. Spira, A.W. The nexus in the intercalated disc of the canine heart: Quantitative data for the estimation of its resistance. J. Ultrastruct. Res. 34:409–425, 1971.

    Article  PubMed  CAS  Google Scholar 

  22. Weidmann, S. The diffusion of radiopotassium across intercalated disks of mammalian cardiac muscle. J. Physiol. London 187:323–342, 1966.

    PubMed  CAS  Google Scholar 

  23. Woodbury, J.W. and W.E. Crill. On the problem of impulse conduction in the atrium. In: Nervous Inhibition ,edited by L. Florey. New York: Plenum, 1961, pp. 24–35.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Diaz, P.J., Rudy, Y., Plonsey, R. (1983). A Model Study of the Effect of the Intercalated Discs on Discontinuous Propagation in Cardiac Muscle. In: Spitzer, J.J. (eds) Myocardial Injury. Advances in Experimental Medicine and Biology, vol 161. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4472-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4472-8_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4474-2

  • Online ISBN: 978-1-4684-4472-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics