Sensitivity and Resistance of the Myocardium to the Toxicity of Isoproterenol in Rats

  • T. Balazs
  • G. Johnson
  • X. Joseph
  • S. Ehrreich
  • S. Bloom
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 161)


The toxicity of a chemical is not a colligative property of a substance; it is a function of the susceptibility of the organism upon which the chemical acts. The susceptibility is determined by the physiological state of the organism, as illustrated by the cardiotoxicity of isoproterenol.


Ventricular Fibrillation Myocardial Necrosis Restricted Diet Cardiotoxic Effect Colligative Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abri, O. & Hecht, A. The influence of long-term application of isoproterenol. Experimental Pathology 20, 146–152 (1981).PubMedCrossRefGoogle Scholar
  2. 2.
    Alexander, R.W., Williams, L.T. & Lefkowitz, R.J. Identification of cardiac beta-adrenergic receptors by (-) [3H]alprenolol binding. Proceedings of the National Academy of Sciences, USA, 72, 1564–1568 (1975).CrossRefGoogle Scholar
  3. 3.
    Balazs, T. Cardiotoxicity of isoproterenol in experimental animals. Influence of stress, obesity and repeated dosing. In Recent Advances in Studies on Cardiac Structure and Metabolism, Vol. 1. E. Bajusz & G. Rona, Eds., pp. 770–778. Baltimore: University Park Press, (1972).Google Scholar
  4. 4.
    Balazs, T. Development of tissue resistance to toxic effects of chemicals. Toxicology 2, 247–255 (1974).PubMedCrossRefGoogle Scholar
  5. 5.
    Balazs, T., Arena, E. & Barron, G.N. Protection against the cardiotoxic effect of isoproterenol HCl by restricted food intake in rats. Toxicology and Applied Pharmacology 21, 237–243 (1972).PubMedCrossRefGoogle Scholar
  6. 6.
    Balazs, T., Ohtake, S. & Noble, J.F. The development of resistance to the ischemic cardiopathic effect of isoproterenol. Toxicology and Applied Pharmacology 21, 200–213 (1972).PubMedCrossRefGoogle Scholar
  7. 7.
    Balazs, T., Sahasrabudhe, M.R. & Grice, H.C. The influence of excess body fat on the cardiotoxicity of isoproterenol in rats. Toxicology and Applied Pharmacology 4, 613–620 (1962).PubMedCrossRefGoogle Scholar
  8. 8.
    Clusin, W.T., Bristow, M.R., Karagueuzian, H.S., Katzung, B.G. & Schroeder, J.S. Do calcium-dependent ionic currents mediate ischemic ventricular fibrillation? American Journal of Cardiology 49, 606–612 (1982).PubMedCrossRefGoogle Scholar
  9. 9.
    Dawson, D.M., Goodfriend, T.L. & Kaplan, N.O. Lactic dehydrogenases: Functions of the two types. Science 143, 929–933, (1964).PubMedCrossRefGoogle Scholar
  10. 10.
    Dertinger, B.L., Beaver, D.C. & Lands, A.H. Toxicity of 1-(3,4-dihydroxyphenyl)-2-isopropylamino ethanol hydrochloride (Isuprel). Proceedings of the Society for Experimental Biology and Medicine 68, 501–507 (1948).PubMedGoogle Scholar
  11. 11.
    Dorigotti, L., Gaetan, M., & Glasser, A.H. & Turolla, E. Competitive antagonism of isoprenaline induced cardiac necroses by ß-adrenoreeeptor blocking agents. Journal of Pharmacy and Pharmacology 21, 188–191 (1969).PubMedCrossRefGoogle Scholar
  12. 12.
    Dusek, J., Rona, G. & Kahn, D.S. Healing process in the marginal zone of an experimental myocardial infarct. American Journal of Pathology 62, 321–332 (1971).PubMedGoogle Scholar
  13. 13.
    Kaplan, N.O. Effect of hormones and environmental factors on lactic dehydrogenases. Journal of Cellular and Comparative Physiology 66 (Suppl. 1), 1–10 (1965).CrossRefGoogle Scholar
  14. 14.
    Krasnow, N. and Rohl, D. Validity of isoproterenol-induced myocardial lactate production: An internal control. American Heart Journal 83, 143–144 (1972).PubMedCrossRefGoogle Scholar
  15. 15.
    Nomura, Y., Kajiyama, H. & Segawa, T. Alteration in sensitivity to isoproterenol and acetylcholine in the rat heart after repeated administration of isoproterenol. Journal of Pharmacology and Experimental Therapeutics 220, 411–416 (1982).PubMedGoogle Scholar
  16. 16.
    Opie, L.H., Nathan, D. & Lubbe, W.F. Biochemical aspects of arrhythmogenesis and ventricular fibrillation. American Journal of Cardiology 43, 131–148 (1979).PubMedCrossRefGoogle Scholar
  17. 17.
    Raab, W. Neurogenic multifocal destruction of myocardial tissue (pathologenic mechanism and its prevention). Reviews in Canadian Biology 22, 217–239 (1963).Google Scholar
  18. 18.
    Rona, G., Chappel, C.I., Balazs, T. & Gaudry, R. The effect of breed, age and sex on myocardial necrosis produced by isoproterenol in the rat. Journal of Gerontology 14, 169–173 (1959).PubMedGoogle Scholar
  19. 19.
    Rona, G., Huttner, T. & Boutet, M. Microcirculatory changes in myocardium with particular reference to cateeholamine-induced cardiac muscle cell injury. In Handbuch der Allgemeinen Pathologie, Vol. III/7. H. Messen, Ed., pp. 791–888. Berlin: Springer Verlag (1977).Google Scholar
  20. 20.
    Rona, G., Kahn, D.S. & Chappel, C.I. Studies on infarct-like myocardial necrosis produced by isoproterenol: A review. Reviews in Canadian Biology 22, 241–255 (1963).Google Scholar
  21. 21.
    Venter, J.C. High efficiency coupling between beta-adrenergic receptors and cardiac contractivity. Direct evidence for “spare” beta-adrenergic receptors. Molecular Pharmacology 16, 429–440 (1979).PubMedGoogle Scholar
  22. 22.
    Wenzel, D.G. & Lyon, J.P. Sympathomimetic amines and heart lactic dehydrogenase isoenzymes. Toxicology and Applied Pharmacology 11, 215–228 (1967).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • T. Balazs
    • 1
  • G. Johnson
    • 1
  • X. Joseph
    • 1
  • S. Ehrreich
    • 1
  • S. Bloom
    • 2
  1. 1.Bureau of DrugsFood and Drug AdministrationUSA
  2. 2.George Washington University Medical CenterUSA

Personalised recommendations