Intracellular Calcium Homeostasis with Extrapolations to Cardiac Ischemia

  • John R. Williamson
  • Suresh K. Joseph
  • Kathleen E. Coll
  • James S. Marks
  • Ronald H. Cooper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 161)


The processes involved in the maintenance of intracellular calcium homeostasis are complex and still poorly understood. Most cells contain between 3 and 6 umol total calcium per g dry wt, are exposed to medium containing 1.25 mM free Ca2+ and yet maintain an intracellular free Ca2+ concentration of 50 to 200 nM in the resting stated1–7. Apart from calcium bound to the glycocalyx and head groups of externally facing phospholipids of the plasma membrane, which rapidly exchanges with the extracellular Ca2+8, most of the intracellular calcium is present in bound form in mitochondria and sarcoplasmic reticulum. 45Ca2+ flux studies have shown that there is a dynamic equilibrium between extracellular and intracellular Ca2+ and between the different intracellular calcium pools8, 9.


Sarcoplasmic Reticulum Calcium Content Liver Mitochondrion Intracellular Calcium Homeostasis Calcium Pool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    DiPOLO, R., REQUERA, J., BRINLEY, F. J., Jr., MULLINS, L. J., SCARPA, A. and TIFFERT, T. Ionized calcium concentrations in squid axons. J. Gen, Physiol. 67, 433–467 (1976).CrossRefGoogle Scholar
  2. 2.
    ALLEN, D. G. and BLINKS, J. R. Calcium transients in aequorin-injected frog cardiac muscle. Nature 273, 509–513 (1978).PubMedCrossRefGoogle Scholar
  3. 3.
    MURPHY, E., COLL, K. E., RICH, T. L. and WILLIAMSON, J. R. Hormonal effects on calcium homeostasis in isolated hepatocytes. J. Biol. Chem. 255, 6600–6608 (1980).PubMedGoogle Scholar
  4. 4.
    MARBAN, E., RINK, T. J., TSIEN, R. W., and TSIEN, R. Y. Free calcium in heart muscle at rest and during contraction measured with Ca2+-sensitive microelectrodes. Nature 286, 845–850 (1980).PubMedCrossRefGoogle Scholar
  5. 5.
    DUBYAK, G. R. and SCARPA, A. Sarcoplasmic Ca2+ transients during the contractile cycle of single barnacle muscle fibres: measurements with arsenazo III-injected fibres. J. Muscle Res. Cell Motility 3, 87–112 (1982).CrossRefGoogle Scholar
  6. 6.
    FABIATO, A. Myoplasmic free calcium concentration reached during the twitch of an intact isolated cardiac cell and during calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned cardiac cell from the adult rat or rabbit ventricle. J. Gen. Physiol. 78, 457–497 (1981).PubMedCrossRefGoogle Scholar
  7. 7.
    TSIEN, R. Y., POZZAN, T. and RINK, T. J. T-cell mitogens cause early changes in cytoplasmic free Ca2+ and membrane potential in lymphocytes. Nature 295, 68–71 (1982).PubMedCrossRefGoogle Scholar
  8. 8.
    LANGER, G. A. The structure and function of the myocardial cell surface. Amer. J. Physiol. 235, H461–H468 (1978).PubMedGoogle Scholar
  9. 9.
    BORLE, A. B. Control, modulation and regulation of cell calcium. Rev. Physiol. Biochem. Pharmacol. 90, 13–153 (1981).PubMedCrossRefGoogle Scholar
  10. 10.
    JOSEPH, S. K., COLL, K. E., COOPER, R. H., MARKS, J. and WILLIAMSON, J. R. Mechanisms underlying calcium homeostasis in isolated hepatocytes. J. Biol. Chem., submitted.Google Scholar
  11. 11.
    COLL, K. E., JOSEPH, S. K., CORKEY, B. E. and WILLIAMSON, J. R. Determination of the matrix free Ca2+ concentration and kinetics of Ca2+ efflux in liver and heart mitochondria. J. Biol. Chem. in press (1982).Google Scholar
  12. 12.
    MEIJER, A. J., GIMPEL, J. A., DELEEUW, G. A., TAGER, J. M. and WILLIAMSON, J. R. Role of anion translocation across the mito-chondrial membrane in the regulation of urea synthesis from ammonia by isolated rat hepatocytes. J. Biol. Chem. 250, 7728–7738 (1975).PubMedGoogle Scholar
  13. 13.
    BERRY, M. N. and FRIEND, D. S. High yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J. Cell Biology 43, 506–520 (1969).CrossRefGoogle Scholar
  14. 14.
    VAN ROSSUM, G. D. V., SMITH, K. P. and BEETON, P. Role of mitochondria in control of calcium content of liver slices. Nature 260, 335–337 (1976).CrossRefGoogle Scholar
  15. 15.
    WILLIAMSON, J. R., STEINMAN, R., COLL, K. E. and RICH, T. L. Energetics of citrulline synthesis by rat liver mitochondria. J. Biol. Chem. 256, 7287–7297 (1981).PubMedGoogle Scholar
  16. 16.
    HERBETTE, L., MARQUARDT, J., SCARPA, A. and BLASIE, J. K. A direct analysis of lamellar xray diffraction from hydrated oriented multilayers of fully functional sarcoplasmic reticulum. Biophys. J. 20, 245–272 (1977).PubMedCrossRefGoogle Scholar
  17. 17.
    SCARPA, A. Measurements of cation transport with metallochromic indicators. Methods Enzymol. 56, 301–338 (1979).PubMedCrossRefGoogle Scholar
  18. 18.
    NICHOLLS, D. G. The regulation of extramitochondrial free calcium ion concentration by rat liver mitochondria. Biochem. J, 176, 463–474 (1978).PubMedGoogle Scholar
  19. 19.
    BROWN, H. M. and RYDQVIST, B. Arsenazo III-Ca2+ effect of pH, ionic strength, and arsenazo III concentration on equilibrium binding evaluated with Ca2+ ion-sensitive electrodes and absorbance measurements. Biophys. J. 36, 117–137 (1981).PubMedCrossRefGoogle Scholar
  20. 20.
    PORTZEHL, H., CALDWELL, P. C. and RÜEGG, J. C. The dependence of contraction and relaxation of muscle fibres from the crab Maia Squinado on the internal concentration of free calcium ions. Biochim. Biophys. Acta 79, 581–591 (1964).PubMedGoogle Scholar
  21. 21.
    OHNISHI, S. T. A method of estimating the amount of calcium bound to the metallochromic indicator arsenazo III. Biochim. Biophys. Acta 586, 217–230 (1979).PubMedCrossRefGoogle Scholar
  22. 22.
    BYGRAVE, F. L. Mitochondrial calcium transport. Curr. Top. Bioenerget. 6, 259–318 (1977).Google Scholar
  23. 23.
    CHEN, J. J., BABCOCK, D. F. and LARDY, H. A. Norepinephrine, vasopressin, glucagon, and A23187 induce efflux of calcium from an exchangeable pool in isolated rat hepoocytes. Proc. Nat. Acad. Sci. USA 75, 2234–2238 (1978).PubMedCrossRefGoogle Scholar
  24. 24.
    REUTER, H. Properties of two inward membrane currents in the heart. Ann. Rev. Physiol. 41, 413–424 (1979).CrossRefGoogle Scholar
  25. 25.
    GARGOIUL, Y. M. Cardioactive drugs and the calcium slow channel in the heart. Trends Pharmacol. Sci. 2, 44–47 (1981).CrossRefGoogle Scholar
  26. 26.
    RINALDI, M. L., LE PEUCH, C. J. and DEMAILLE, J. G. The epine-phrine-induced activation of the cardiac slow Ca2+ channel is mediated by the cAMP-dependent phosphorylation of calciductin, a 23000 Mr sarcolemmal protein. FEBS Lett. 129, 277–281 (1981).PubMedCrossRefGoogle Scholar
  27. 27.
    REEVES, J. P. and SUTKO, J. L. Sodium-calcium exchange in cardiac membrane vesicles. Proc. Natl. Acad. Sci. USA 76, 590–594 (1979).PubMedCrossRefGoogle Scholar
  28. 28.
    PITTS, B. J. R. Stoichiometry of sodium-calcium exchange in cardiac sarcolemmal vesicles. J. Biol. Chem. 254, 6232–6235 (1979).PubMedGoogle Scholar
  29. 29.
    BERS, D. M., PHILIPSON, K. D. and NISHIMOTO, A. Y. Sodium-calcium exchange and sidedness of isolated sarcolemmal vesicles. Biochim. Biophys. Acta 601, 358–371 (1980).PubMedCrossRefGoogle Scholar
  30. 30.
    CARONI, P., REINLIB, L. and CARAFOLI, E. Charge movements during the Na -Ca2+ exchange in heart sarcolemmal vesicles. Proc. Natl. Acad. Sci. USA 77, 6354–6358 (1980).PubMedCrossRefGoogle Scholar
  31. 31.
    CARONI, P. and CARAFOLI, E. Personal communication (1982).Google Scholar
  32. 32.
    CARONI, P. and CARAFOLI, E. An ATP-dependent Ca2+-pumping system in dog heart sareolemma. Nature 283, 765–767 (1980).PubMedCrossRefGoogle Scholar
  33. 33.
    TRUMBLE, W. R., SUTKO, J. L; and REEVES, J. P. ATP-dependent calcium transport in cardiac sarcolemmal membrane vesicles. Life. Sci. 27, 207–214 (1980).PubMedCrossRefGoogle Scholar
  34. 34.
    CARONI, P. and GARAFOLI, E. The Ca2+ pumping ATPase of heart sarcolemma. J. Biol. Chem. 256, 3263–3270 (1981).PubMedGoogle Scholar
  35. 35.
    CARONI, P. and CARAFOLI, E. Regulation of Ca2+-pumping ATPase of heart sarcolemma by a phosphorylation-dephosphorylation process. J. Biol. Chem. 256, 9371–9373 (1981).PubMedGoogle Scholar
  36. 36.
    ENDO, M. Calcium release from the sarcoplasmic reticulum. Physiol. Rev. 57, 71–108 (1977).PubMedGoogle Scholar
  37. 37.
    FABIATO, A. and FABIATO, F. Calcium and cardiac excitation-contraction coupling. Ann. Rev. Physiol. 41, 473–484 (1979).CrossRefGoogle Scholar
  38. 38.
    LARAIA, P. J. and MARKIN, E. Adenosine 3’:5’-monophosphate-dependent membrane phosphorylation. Circ. Res. 35, 298–306 (1974).Google Scholar
  39. 39.
    KIRCHBERGER, M. A., TADA, M. and KATZ, A. M. Adenosine 3’:5’-monophosphate dependent protein kinase-catalyzed phosphorylation reaction and its relationship to calcium transport in cardiac sarcoplasmic reticulum. J. Biol. Chem. 249, 6166–6173 (1974).PubMedGoogle Scholar
  40. 40.
    LE PEUCH, C. J., HAIECH, J. and DEMAILLE, J. G. Concerted regulation of cardiac sarcoplasmic reticulum calcium transport by cyclic adenosine monophosphate dependent and calcium-calmod-ulin-dependent phosphorylation. Biochemistry 18, 5150–5157 (1979).PubMedCrossRefGoogle Scholar
  41. 41.
    BILEZIKJIAN, L. M., KRANIAS, E. G., POTTER, J. D. and SCHWARTZ, A. Studies on phosphorylation of canine cardiac sarcoplasmic reticulum by calmodulin-dependent protein kinase. Circ. Res. 49, 1356–1362 (1981).PubMedGoogle Scholar
  42. 42.
    KIRCHBERGER, M. A. and ANTONETZ, T. Calmodulin-mediated regulation of calcium transport and (Ca2++Mg2+)-activated ATPase activity in isolated cardiac sarcoplasmic reticulum. J. Biol. Chem. 257, 5685–5691 (1982).PubMedGoogle Scholar
  43. 43.
    ROBERTSON, S. P., POTTER, J. D. and ROUSLIN, W. The Ca2+ and Mg2+ dependence of Ca2+ uptake and respiratory function of porcine heart mitochondria. J. Biol. Chem. 257, 1743–1748 (1982).PubMedGoogle Scholar
  44. 44.
    SARIS, N.-E. and ÅKERMAN, K. E. O. Uptake and release of bivalent cations in mitochondria. Curr. Top. Bioenerget. 10, 103–179 (1980).Google Scholar
  45. 45.
    NICHOLLS, D. G. and CROMPTON, M. Mitochondrial calcium transport. FEBS Lett. 111, 261–268 (1980).PubMedCrossRefGoogle Scholar
  46. 46.
    WILLIAMSON, J. R., COOPER, R. H. and HOEK, J. B. Role of calcium in hormonal regulation of liver metabolism. Biochim. Biophys. Acta 639, 243–295 (1981).PubMedGoogle Scholar
  47. 47.
    CROMPTON, M., SIGEL, E., SALZMANN, M. and CARAFOLI, E. A kinetic study of the energy-linked influx of Ca2+ into heart mitochondria. Eur. J. Biochem. 69, 429–434 (1976).CrossRefGoogle Scholar
  48. 48.
    BRAGADIN, M., POZZAN, T. and AZZONE, G. F. Kinetics of Ca2+ carrier in rat liver mitochondria. Biochemistry 18, 5972–5978 (1980).CrossRefGoogle Scholar
  49. 49.
    AFFOLTER, H. and CARAFOLI, E. Hyperbolic kinetics of the electrophoretic carrier of Ca2+ uptake in liver mitochondria, J. Biochemistry 119, 199–201 (1981).Google Scholar
  50. 50.
    CARAFOLI, E. The calcium cycle of mitochondria. FEBS Lett. 104, 1–5 (1979).PubMedCrossRefGoogle Scholar
  51. 51.
    FISKUM, G. and LEHNINGER, A. L. Regulated release of Ca2+ from respiring mitochondria by Ca2+/2H+ antiport. J. Biol. Chem. 254, 6236–6239 (1979).PubMedGoogle Scholar
  52. 52.
    BERNARDI, P. and AZZONE, G. F. A membrane potential-modulated pathway for Ca2+ efflux in rat liver mitochondria. FEBS Lett. 139, 13–16 (1982).PubMedCrossRefGoogle Scholar
  53. 53.
    BECKER, G. L. Steady state regulation of extramitochondrial Ca2+ by rat liver mitochondria. Biochim. Biophys. Acta 591, 234–239 (1980).PubMedCrossRefGoogle Scholar
  54. 54.
    HUTSON, S. M., PFEIFFER, D. R. and LARDY, H. A. Effect of cations and anions on the steady state kinetics of energy-dependent Ca2+ transport in rat liver mitochondria. J. Biol. Chem. 251, 5251–5258 (1976).PubMedGoogle Scholar
  55. 55.
    REED, K. C. and BYGRAVE, F. L. A kinetic study of mitochondrial calium transport, Eur. J. Biochem. 55, 497–504 (1975).PubMedCrossRefGoogle Scholar
  56. 56.
    BECKER, G. L., FISKUM, G. and LEHNINGER, A. L. Regulation of free Ca2+ by liver mitochondria and endoplasmic reticulum. J. Biol. Chem. 255, 9009–9012 (1980).PubMedGoogle Scholar
  57. 57.
    BLACKMORE, P. F., HUGHES, B. P., SHUMAN, E. A. and EXTON, J. H. α-Adrenergic activation of Phosphorylase in liver cells involves mobilization of intracellular calcium without influx of extracellular calcium. J. Biol. Chem. 257, 190–197 (1982).PubMedGoogle Scholar
  58. 58.
    DENTON, R. M. and MCCORMACK, J. G. On the role of the calcium transport cycle in heart and other mammalian mitochondria. FEBS Lett. 119, 1–8 (1980).PubMedCrossRefGoogle Scholar
  59. 59.
    STEENBERGEN, C., DELEEUW, G., BARLOW, C. H., CHANCE, B. and WILLIAMSON, J. R. Heterogeneity of the hypoxic state in perfused rat heart. Circ. Res. 41, 606–615 (1977).PubMedGoogle Scholar
  60. 60.
    WILLIAMSON, J. R., DAVIS, K. N. and MEDINA-RAMIREZ, G. Quantitative analysis of heterogeneous NADH fluoresence in perfused rat hearts during hypoxia and ischemia. J. Mol. Cell. Cardiol., in press (1982).Google Scholar
  61. 61.
    NAYLER, W. G., POOLE-WILSON, P. A. and WILLIAMS, A. Hypoxia and calcium. J. Mol. Cell. Cardiol. 11, 683–706 (1979).PubMedCrossRefGoogle Scholar
  62. 62.
    NEELY, J. R., WHITMER, J. T. and ROVETTO, M. J. Effect of coronary blood flow on glycolytic flux and intracellular pH in isolated rat hearts. Circ. Res. 37, 733–741 (1975).PubMedGoogle Scholar
  63. 63.
    STEENBERGEN, C., DELEEUW, G., RICH, T. L. and WILLIAMSON, J. R. Effects of acidosis and ischemia on contractility and intracellular pH of rat heart. Circ. Res. 41, 849–858 (1977).PubMedGoogle Scholar
  64. 64.
    GARLICK, P. B., RADDA, G. K. and SEELEY, P. J. Studies of acidosis in the ischaemic heart by phosphorus nuclear magnetic resonance. Biochem. J. 184, 547–554 (1979).PubMedGoogle Scholar
  65. 65.
    CASE, R. B., FELIX, A. and CASTALLAN, F. S. Rate and rise of myocardial pCO2 during early myocardial ischemia in dog. Circ. Res. 45, 324–330 (1979).PubMedGoogle Scholar
  66. 66.
    COBBE, S. M. and POOLE-WILSON, P. A. The time of onset and severity of acidosis in myocardial ischemia. J. Mol. Cell. Cardiol. 12, 745–760 (1980).PubMedCrossRefGoogle Scholar
  67. 67.
    EBASHI, S., KITAZAWA, T. T., KOHAMA, K. and VAN EERD, P. C. Calcium ion in cardiac contractility. In Recent Advances in Studies on Cardiac Structure and Metabolism, Vol. 11, T. Kobayashi, T. Sano and N. S. Dhalla, Eds., pp. 93–101, Baltimore: University Park Press (1978).Google Scholar
  68. 68.
    FABIATO, A. and FABIATO, F. Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiac and skeletal muscles. J. Physiol. (Lond) 276, 233–255 (1978).Google Scholar
  69. 69.
    ROBERTSON, S. P., JOHNSON, J. D. and POTTER, J. D. The effects of pH on calcium binding to the Ca2+K-Mg2+ and the Ca2+ specific sites of bovine cardiac TnC. Circulation 58, supp. II 72 (1978).Google Scholar
  70. 70.
    SHIGEKAWA, M., FINEGAN, J. M. and KATZ, A. M. Calcium transport ATPase of canine cardiac sarcoplasmic reticulum: a comparison with that of rabbit fast skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. 251, 6894–6900 (1976).PubMedGoogle Scholar
  71. 71.
    ROVETTO, M. J., WHITMER, J. T. and NEELY, J. R. Comparison of the effects of anoxia and whole heart ischemia on carbohydrate utilization in isolated working rat hearts. Circ. Res. 32, 699–711 (1973).PubMedGoogle Scholar
  72. 72.
    BAILEY, I. A., RADDA, G. K., SEYMOUR, A. M. and WILLIAMS, S. R. The effects of insulin on myocardial metabolism and acidosis in normoxia and ischemia. Biochim. Biophys. Acta 720, 17–27 (1982).PubMedCrossRefGoogle Scholar
  73. 73.
    BERNE, R. M. and RUBIO, R. Adenine nucleotide metabolism in the heart. Circ. Res. 23, III 109–120 (1974).Google Scholar
  74. 74.
    JENNINGS, R. B. and REIMER, K. A. Lethal myocardial ischemic injury. Amer. J. Pathol. 102, 241–255 (1981).Google Scholar
  75. 75.
    WILLIAMSON, J. R. Mitochondrial function in the heart. Ann. Rev. Physiol. 41, 485–506 (1979).CrossRefGoogle Scholar
  76. 76.
    KATZ, A. M. and REUTER, H. Cellular calcium and cardiac cell death. Amer. J. Cardiol. 44, 188–190 (1979).PubMedCrossRefGoogle Scholar
  77. 77.
    PHILIPSON, K. D., BERSOHN, M. M. and NISHIMOTO, A. Y. Effects of pH on Na -Ca2+ exchange in canine cardiac sarcolemmal vesicles. Circ. Res. 50, 287–293 (1982).PubMedGoogle Scholar
  78. 78.
    NAYLER, W. G. The role of calcium in the ischemic myocardium. Am. J. Pathol. 102, 262–270 (1981).PubMedGoogle Scholar
  79. 79.
    KUBLER, W. and KATZ, A. M. Mechanism of early “pump” failure of the ischemic heart: possible role of adenosine triphosphate depletion and inorganic phosphate accumulation. Amer. J. Cardiol. 40, 467–471 (1977).PubMedCrossRefGoogle Scholar
  80. 80.
    SCHAPER, J., MULCH, J., WINKLER, B. and SCHAPER, W. Ultra-structural, functional and biochemical criteria for estimation of reversibility of ischemic injury: a study of the effects of global ischemia on the isolated dog heart. J. Mol. Cell. Cardiol. 11, 521–541 (1979).PubMedCrossRefGoogle Scholar
  81. 81.
    WATTS, J. A., KOCH, C. D. and LANOUE K. F. Effects of Ca2+ antagonism in energy metabolism: Ca2+ and heart function after ischemia. Am. J. Physiol. 238; H909–H916 (1980).PubMedGoogle Scholar
  82. 82.
    CHIEN, K. R., PFAU, R. G. and FÄRBER, J. L. Ischemic myocardiol cell injury. Am. J. Pathol. 97, 505–530 (1979).PubMedGoogle Scholar
  83. 83.
    SHEN, A. C. and JENNINGS, R. B. Myocardial calcium and magnesium in acute ischemic injury. Am. J. Pathol. 67, 417–440 (1972).PubMedGoogle Scholar
  84. 84.
    SHEN, A. C. and JENNINGS, R. B. Kinetics of calcium accumulation in acute myocardial ischemic injury. Am. J. Pathol. 67, 441–452 (1972).PubMedGoogle Scholar
  85. 85.
    HEARSE, D. J., GARLICK, P. B. and HUMPHREY, S. M. Ischemic contracture of the myocardium: mechanisms and prevention. Am. J. Cardiol. 39, 986–993 (1977).PubMedCrossRefGoogle Scholar
  86. 86.
    GRUNWALD, P. M. and NAYLER, W. G. Calcium entry in the calcium paradox. J. Mol. Cell. Cardiol. 13, 867–880 (1981).CrossRefGoogle Scholar
  87. 87.
    HEARSE, D. J., HUMPHREY, S. M. and BULLOCK, G. R. The oxygen paradox and the calcium paradox: two facets of the same problem? J. Mol. Cell. Cardiol. 10, 641–668 (1979).CrossRefGoogle Scholar
  88. 88.
    KATZ, A. M. and MESSINEO, F. C. Lip id-membrane interactions ! and the pathogenesis of ischemic damage in the myocardium. Circ. Res. 48, 1–16 (1981).PubMedGoogle Scholar
  89. 89.
    CORR, P. B., LEE, B. I. and S0BEL, B. E. Electrophysical and biochemical derangements in ischemic myocardium: interactions involving the cell membrane. Acta Med. Scand. Supp. 651, 59–69 (1981).Google Scholar
  90. 90.
    CHIEN, K. R., REEVES, J. P., BUJA, L., BONTE, F., PARKEY, R. W. and WILLERSON, J. T. Phospholipid alterations in canine ischemic myocardium. Circ. Res. 48, 711–719 (1981).PubMedGoogle Scholar
  91. 91.
    BECKMAN, J. K., OWENS, K., KNAUER, T. E. and WEGLICKI, E. B. Hydrolysis of sarcolemma by lysosomal lipases and inhibition by chlorpromazine. Am. J. Physiol. 242, H652–H656 (1982).PubMedGoogle Scholar
  92. 92.
    BEINLICH, C. J., CLARK, M. G., MCKEE, E. E., LINS, J. A. and MORGAN, H. E. Neutralalkaline proteolytic activity in rat cardiac muscle cells. J. Mol. Cell. Cardiol. 13, 23–36 (1981).PubMedCrossRefGoogle Scholar
  93. 93.
    FREI, E. and ZAHLER, P. Phospholipase A2 from sheep erythrocyte membranes: Ca2+ dependence and localization. Biochim. Biophys. Acta 550, 450–463 (1979).PubMedCrossRefGoogle Scholar
  94. 94.
    WONG, P. Y-K. and CHEUNG, W. Y. Calmodulin stimulates human1 platelet phospholipase A2. Biochem. Biophys. Res. Commun. 90, 473–480 (1979).PubMedCrossRefGoogle Scholar
  95. 95.
    HIRATA, F. The regulation of lipomodulin, a phospholipase inhibitory protein in rabbit neutrophils by phosphorylation. J. Biol. Chem. 256, 7730–7733 (1981).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • John R. Williamson
    • 1
  • Suresh K. Joseph
    • 1
  • Kathleen E. Coll
    • 1
  • James S. Marks
    • 1
  • Ronald H. Cooper
    • 1
  1. 1.Department of Biochemistry and BiophysicsUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations