Skip to main content

Lipid Peroxidation and Acute Myocardial Ischemia

  • Chapter
Myocardial Injury

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 161))

Abstract

Lipid peroxides (LP) and free radicals (FR) have recently been identified by us as metabolic intermediates during acute myocardial ischemia. The mechanism of lipid peroxidation is not clearly understood. We hypothesize: 1) FR production increases during ischemia due to alteration in the redox state of the mitochondria and due to interaction between metabolites and O2; 2) FR foster increased formation of LP with a concomitant decrease in protective antioxidants such as glutathione peroxidase (GP) and ascorbic acid (ASC). To test this hypothesis, we first studied animal models, rat and dog. In the rat, 48 hrs post coronary occlusion (CO), the lipid peroxide content in the infarcted left ventricular tissue (LV) measured as its product malondialdehyde (MDA) increased from 0.31 to 0.58 nm/ mg P (p<.001), an increase of 87% while GP decreased from 62 to 21 nm/min/mg P (p<.001). Superoxide dismutase contents decreased from 81 to 63 µg/g (p<.001). The polyunsaturated fatty acid (PUFA) contents diminished significantly (arachidonic acid from 19 to 16%, p<.001). In the dog, sequential transcardiac changes in blood showed very early increase of both FR as studied by electron spin resonance spectrometry in lyophilized samples and catecholamines (norepinephrine, NE, and epinephrine, E).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. YAMAMOTO, H. Studies on clinical applications of electron spin resonance (ESR) spectrometry: Application to diagnosis of ischemic heart disease. Japan. Circ. J. 35, 1257–1258 (1971).

    Google Scholar 

  2. AKIYAMA, K. Studies on myocardial metabolism in the ischemic heart. Part II. Studies by the method of electron spin resonance. Japan. Circ. J. 33, 146–147 (1969).

    Google Scholar 

  3. SUZUKI, Y. Studies on the free radicals in myocardial mitochondria by electron spin resonance (ESR) spectrometry (Studies on experimental infarction dogs). Japan. Circ. J. 39, 683–691 (1975).

    Article  CAS  Google Scholar 

  4. HALL, E.T. The oxygen effect, in: Radiobiology for the radiologist. p. 48, New York, Harper and Row 1973).

    Google Scholar 

  5. SMITH, D.S., REHNCRONA, S. & SIESJO, BO K. Barbiturates as protective agents in brain ischemia and as free radical scavengers in vitro. Acta Physiol. Scand. Suppl. 492, 129–134 (1980).

    PubMed  CAS  Google Scholar 

  6. TAPPEL, A. Free radical lipid peroxidation and its inhibition by vitamin E and selenium. Federation Proc. 24, 73–78 (1965).

    CAS  Google Scholar 

  7. MYERS, C.E., McGUIRE, W.P., LISS, R.H., IFRIM, I., GROTZINGER, V., & YOUNG, R.C. Adriamycin: The role of lipid peroxidation in cardiac toxicity and tumor response. Science 197, 165–167 (1977).

    Article  PubMed  CAS  Google Scholar 

  8. WILLS, E.D. Effect of unsaturated fatty acids and their peroxides on enzymes. Biochem. Pharmaco1. 7, 7–16 (1961).

    Article  CAS  Google Scholar 

  9. OKUMA, M., TAKAYAMA, H., & UCHINO, H. Generation of prostacyclin-like substance and lipid peroxidation in vitamin E deficient rats. Prostaglandins, 19, 527 (1980).

    Article  CAS  Google Scholar 

  10. SATOH, K. Serum lipid peroxide in cerebrovascular disorders determined by a new colorometric method. Clin. Chim. Acta 90, 37–43 (1978).

    Article  PubMed  CAS  Google Scholar 

  11. HILDEBRANT, A.G., & ROOTS, I. Reduced nicotinamide adenine dinucleotide phosphate (NADPH) dependent formation and breakdown of hydrogen peroxide during mixed function oxidation reactions in liver microsomes. Arch. Biochem. Biophys. 171, 385–397 (1975).

    Article  Google Scholar 

  12. ROTRUCK, J.T., POPE, A.L., GANTHER, H.E., SWANSON, A.B., Hafeman, D.G., & Hoekstra, W.G. Selenium: Biochemical role as a component of glutathione peroxidase. Science, 179, 588–590 (1973).

    Article  PubMed  CAS  Google Scholar 

  13. ELSTNER, E.R., & HEUPEL, A. Inhibition of nitrite formation from hydroxylammonium cholride. A simple assay for superoxide dismutase. Anal. Biochem. 70, 616–620 (1976).

    Article  PubMed  CAS  Google Scholar 

  14. DAY, B.R., WILLIAMS, D.R., & MARSH, C.A. A rapid manual method for routine assay of ascorbic acid in serum and plasma. Clin. Biochem. 12, 22 (1979).

    Article  PubMed  CAS  Google Scholar 

  15. SEDLOCK, J., & LINDSAY, R.H. Estimation of total, protein bound and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal. Biochem. 25, 192 (1968).

    Article  Google Scholar 

  16. CROSSMAN, M.W., & HIRSCHBERG, C.B. Biosynthesis of phytospingosine by the rat. J. Biol. Chem. 252, 5815–5819 (1977).

    PubMed  CAS  Google Scholar 

  17. JORDI, H.C. Separation of long and short chain fatty acid as naphthacyl and substituted phenacyl esters by high performance liquid chromatography. J. Liq. Chromat. 1(2), 215–230 (1978).

    Article  CAS  Google Scholar 

  18. LOANN, W., SREIBER, J., & GULICH, W. On the possible involvement of ascorbic acid and copper proteins in leukemia. IV. ESR investigations on the interaction between ascorbic acid and some copper proteins. Z. Naturforsch. 34, 550–554 (1979).

    Google Scholar 

  19. WLAAS, E., LOVSTAD, R., & WALAAS, O. Free radical formation of catecholamines by the action of ceruloplasmin. Proc. Biochem. Soc. J92, 18P–19P (1964).

    Google Scholar 

  20. JANZEN, E.G. Spin traps and ESR spectrometry. Acc. Chem. Res. 4, 31–42 (1971).

    Article  CAS  Google Scholar 

  21. FLOYD, R.A., SOONG, L.M., WALKER, R.N., & STUART, M. Lipid hydroperoxide activation in N-hydroxyl N-aeetylaminoflourene via a free radical route. Cancer Res. 36, 2761–2767 (1976).

    PubMed  CAS  Google Scholar 

  22. HARMON, D., & PIETTE, L. Free radical theory of aging. Free radical reactions in serum. J. Gerontol. 21(4), 560–565 (1966).

    Google Scholar 

  23. SPECTOR, R. Vitamin homeostasis in the central nervous system. New Eng.J. Med. 296, 1393 (1977).

    Article  PubMed  CAS  Google Scholar 

  24. DEMOPOULOS, H.B., FLAMM, E.S., PIETRONIGRO, D.D., & SELIGMAN, M.L. The free radical pathology and the microcirculation in the major central nervous system disorders. Acta Physiol. Scand. Suppl. 492, 91–119 (1980).

    PubMed  CAS  Google Scholar 

  25. HARLAND, W.A., GILBERT, J.D., & BROOKS, C.J.W. Lipids of human atheroma. VII. Oxidized derivatives of cholesteryl linoleate. Biochem. Biophys. Acta 316, 378–385 (1973).

    PubMed  CAS  Google Scholar 

  26. DOROSHOW, J.H., LOCKER, G.Y., & MYERS, C.E. Enzymatic defenses of the mouse heart against reactive oxygen metabolites. Alterations produced by doxorubicin. J. Clin. Invest. 65, 128–135 (1980).

    Article  PubMed  CAS  Google Scholar 

  27. RAO, P.S., & MUELLER, H.S. Lipid peroxide production and glutathione peroxidase depletion in rat myocardium after acute infarction. Clin. Chem. 27, 1027 (1981).

    Google Scholar 

  28. RAO, P.S., RAO, P.B., BROCK, R.E., & MUELLER, H.S. Patterns of free radicals across the heart during acute myocardial infarct. Clin. Res. 28, 758A (1980).

    Google Scholar 

  29. RAO, P.S., EVANS, R.G., & MUELLER, H.S. Sequential transcardiac changes in free radicals, catecholamines and lipid peroxides in early experimental myocardial infarction. Clin. Res. 30, 214A (1982).

    Google Scholar 

  30. SONNEVELD, P. Effect of α-tocopherol on the cardiotoxicity of adriamycin in the rat. Cancer Treat. Rep. 62, 1033–1036 (1978).

    PubMed  CAS  Google Scholar 

  31. MCCOY, P.B., GIBSON, D.D., FONG, K., & Hornbrook, K.R. Effect of glutathione peroxidase on lipid peroxidation in biological membranes. Biochem. Biophys. Acta 431, 459–468 (1976).

    Google Scholar 

  32. JAAKKOLA, K. Administration of vitamin E along with selenium to patients with ischemic heart disease. Prevention, 33(9), 97 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Rao, P.S., Mueller, H.S. (1983). Lipid Peroxidation and Acute Myocardial Ischemia. In: Spitzer, J.J. (eds) Myocardial Injury. Advances in Experimental Medicine and Biology, vol 161. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4472-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4472-8_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4474-2

  • Online ISBN: 978-1-4684-4472-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics