Skip to main content

The Possibility of Propagation between Myocardial Cells not Connected by Low-Resistance Pathways

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 161))

Abstract

The vertebrate myocardium is an assembly of short individual cells, separated at their ends by the intercalated disks (ID). The fluid in the ID gap is continuous with the bulk interstitial fluid, and the gap thickness averages about 200 A (Sperelakis and Rubio, 1971). Regions in which the two membranes come into closer proximity (about 20 A), the gap junctions, are found abundantly in mammalian hearts, but such specialized contacts are rare and much smaller in area in lower vertebrates (for references, see Sperelakis, 1979). A step on the rising phase of the action potential, resembling a post-junctional potential, becomes prominent under conditions of impeded propagation (Hoshiko and Sperelakis, 1962). Increase in gap width occurs in conditions that depress propagation (see Sperelakis, 1979), and the cell-to-cell transmission process is labile (Sperelakis and Hoshiko, 1961; Sperelakis, 1969). Contiguous cells become functionally disconnected at the IDs following focal injury (De Mello, 1972) and under other experimental conditions (see review by Sperelakis, 1979).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baldwin, K.M. Cell-to-cell tracer movement in cardiac muscle: Ruthenium red vs lanthanum. Cell Tiss. Res. 221, 279–294 (1981).

    Article  CAS  Google Scholar 

  • Barr, L., Dewey, M.M., and W. Berger. Propagation of action potentials and the structure of the nexus in cardiac muscle. J. Gen. Physiol. 48, 797–823 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Beder, S.D. and Skinner, J.E. Cardiac cellular electrophysiology in awake conscious pigs: membrane cable properties. Circulation 64, IV-116, Abstr. #428 (.1981).

    Google Scholar 

  • Beeler, G.W. and Reuter, H. Reconstruction of the action potential of ventricular myocardial fibers. J. Physiol. 268, 177–210 (1977).

    PubMed  CAS  Google Scholar 

  • De Mello, W.C. The healing-over process in cardiac and other muscle fibers. In: Electrical Phenomena in Heart (W.C. De Mello, ed.), Academic Press, New York, pp. 323–351 (1972).

    Google Scholar 

  • De Mello, W.C. Effect of intracellular injection of calcium and strontium on cell communication in heart. J. Physiol. 250, 231–245 (1975).

    PubMed  Google Scholar 

  • Diaz, P.J., Rudy, Y., and Plonsey, R. A cardiac propagation model with intercalated discs. (Abstr.) 34th ACEMB meeting, Houston, Sept. 21–23, p. 217 (1981).

    Google Scholar 

  • Forbes, M.S. and Sperelakis, N. Ultrastructure of lizard ventricular muscle. J. Ultrastruct. Res. 34, 439–451 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Heppner, D.B. and Plonsey, R. Simulation of eleetrical interaction of cardiac cells. Biophys. J. 10, 1057–1075 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Hoshiko, T. and Sperelakis, N. Prepotentials and unidirectional propagation in myocardium. Am. J. Physiol. 201, 873–880 (1961).

    PubMed  CAS  Google Scholar 

  • Hoshiko, T. and Sperelakis, N. Components of the cardiac action potential. Am. J. Physiol. 203, 258–260 (1962).

    PubMed  CAS  Google Scholar 

  • Kline, R. and Morad, M. Potassium efflux and accumulation in heart muscle. Biophys. J. 16, 367–372 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Knowles, W.D., Funch, P.G., and Schwartzkroin, P.A. Electrotonic and dye coupling in hippocampal CAI pyramidal cells in vitro. (in press).

    Google Scholar 

  • Korn, H. and Faber, D.S. Electrical field effect interactions in the vertebrate brain. Trends in Neuroscience 3(1), 6–9 (1980).

    Article  Google Scholar 

  • Macdonald, R.L., Hsu, D., Mann, J.E., and Sperelakis, N. An analysis of the problem of Kaccumulation in the intercalated disk clefts of cardiac muscle. J. Theor. Biol. 51, 455–473 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Mann, J.E., Jr., Foley, E., and Sperelakis, N. Resistance and potential profiles in the cleft between two myocardial cells: electrical analog and computer simulations. J. Theor. Biol. 68, 1–15 (1977).

    Article  PubMed  Google Scholar 

  • Mann, J.E. and Sperelakis, N. Further development of a model for electrical transmission between myocardial cells not connected by low-resistance pathways. J. Electrocardiol. 12, 23–33 (1979).

    Article  PubMed  Google Scholar 

  • Mann, J.E., Sperelakis, N., and Ruffner, J.A. Alteration in sodium channel gate kinetics of the Hodgkin-Huxley equations applied to an electric field model for interaction between excitable cells. IEEE Trans. Biomed. Eng. 28, 655–661 (1981).

    Article  PubMed  CAS  Google Scholar 

  • McLean, M.J. and Sperelakis, N. Difference in degree of electrotonic interactions between highly differentiated and reverted cultured heart cell reaggregates. J. Memb. Biol. 57, 37–50 (1980).

    Article  CAS  Google Scholar 

  • Noble, D. A modification of the Hodgkin-Huxley equations applicable to Purkinje fiber action and pacemaker potentials. J. Physiol. 160, 317–352 (1962).

    PubMed  CAS  Google Scholar 

  • Page, E., McCallister, L.P. Studies on the intercalated disk of rat left ventricular myocardial cells. J. Ultastruct. Res. 43, 388–411 (1973).

    Article  CAS  Google Scholar 

  • Plonsey, R. and Rudy, Y. Electrocardiogram sources in a 2-dimen-sional anisotropic activation model. Med. Biol. Eng. Comput. 18, 87–94 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Ruffner, J., Sperelakis, N., and Mann, J.E., Jr. Application of the Hodgkin-Huxley equations to an electric field model for interactions between excitable cells. J. Theor. Biol. 87, 129–152 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Spach, M.S., Miller, W.T., III, Geselowitz, D.B., Barr, R.C., Kootsey, J.M., and Johnson, E.A. The discontinuous nature of propagation in normal canine cardiac muscle. Evidence for recurrent discontinuity of intracellular resistance that affects the membrane currents. Circ. Res. 48, 39–54 (1981).

    PubMed  CAS  Google Scholar 

  • Sperelakis, N. Additional evidence for high-resistance intercalated discs in the myocardium. Circulation Res. 12, 676–683 (1963).

    PubMed  CAS  Google Scholar 

  • Sperelakis, N. Lack of electrical coupling between contiguous myocardial cells in vertebrate hearts. In: Comparative Physiology of the Heart: Current Trends, (F.V. McCann, ed.), Birkhauser-Verlag, Basel, Switzerland, pp. 135–165 (1969).

    Google Scholar 

  • Sperelakis, N. Propagation mechanisms in heart. Ann. Rev. Physiol. 41, 441–457 (1979).

    Article  Google Scholar 

  • Sperelakis, N, and Macdonald, R.L. Ratio of transverse to longitudinal resistivities of isolated cardiac muscle fiber bundles. J. Electrocardiol. 7, 301–314 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Sperelakis, N. and Hoshiko, T. Electrical impedance of cardiac muscle. Circ. Res. 9, 1280–1283 (1961).

    PubMed  CAS  Google Scholar 

  • Sperelakis, N. and Lehmkuhl, D. Effect of current on transmembrane potentials in cultured chick heart cells. J. Gen. Physiol. 47, 895–927 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Sperelakis, N. and Mann, J.E., Jr. Evaluation of electric field changes in the cleft between excitable cells. J. Theor. Biol. 64, 71–96 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Sperelakis, N. and Rubio, R. Ultrastructural ehanges produced by hypertonicity in cat cardiac muscle. J. Mol. Cell. Cardiol. 3, 139–156 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Sperelakis, N. and Shumaker, K. Phase-plane analysis of cardiac action potentials. J. Electrocardiology 1, 31–42 (1968).

    Article  CAS  Google Scholar 

  • Sperelakis, N., Hoshiko, T., and Berne, R.M. Non-syncytial nature of cardiac muscle: membrane resistance of single cells. Am. J. Physiol. 198, 531–536 (1960).

    PubMed  CAS  Google Scholar 

  • Sperelakis, N., Marschall, R.A., and Mann, J.E. Propagation down a chain of excitable cells by electric field interactions in the junctional clefts: Effect of variation in extracellular resistances, including a “sucrose gap” simulation. (submitted for publication).

    Google Scholar 

  • Sperelakis, N., Mayer, G., and MacDonald, R. Velocity of propagation in vertebrate cardiac muscles as functions of tonicity and [K+]o. Amer. J. Physiol. 219, 952–963 (1970).

    CAS  Google Scholar 

  • Sperelakis, N., Rubio, R., and Redick, J. Sharp discontinuity in sarcomere lengths across intercalated disks of fibrillating cat hearts. J. Ultrastruct. Res. 30, 503–532 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Sperelakis, N., Hoshiko, T., Keller, R.F., Jr. and Berne, R.M. Intracellular and external recordings from frog ventricular fibers during hypertonic perfusion. Am. J. Physiol. 198, 135–140 (1960).

    PubMed  CAS  Google Scholar 

  • Tarr, M. and Sperelakis, N. Weak electrotonic interaction between contiguous cardiac cells. Am. J. Physiol. 207, 691–700 (1964).

    PubMed  CAS  Google Scholar 

  • Tarr, M. and Sperelakis, N. Decreased intercellular resistance during spontaneous depolarization in myocardixim. Am. J. Physiol. 212, 1503–1511 (1967).

    PubMed  CAS  Google Scholar 

  • Weidmann, S. The diffusion of radiopotassium across intercalated disks of mammalian cardiac muscle. J. Physiol. 187, 323–342 (1966).

    PubMed  CAS  Google Scholar 

  • Weidmann, S. Electrical coupling between myocardial cells. Prog. Brain Res. 31, 275–281 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Woodbury, J.W. and Crill, W.E. The potential in the gap between two abutting cardiac muscle cells. Biophys. J. 10, 1076–1083 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Yarom, Y. and Spira, M.E. Extracellular potassium ions mediate specific neuronal interaction. Science 216, 80–82 (1982).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Sperelakis, N. (1983). The Possibility of Propagation between Myocardial Cells not Connected by Low-Resistance Pathways. In: Spitzer, J.J. (eds) Myocardial Injury. Advances in Experimental Medicine and Biology, vol 161. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4472-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4472-8_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4474-2

  • Online ISBN: 978-1-4684-4472-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics