Skip to main content

Methods of Genetic Analysis of Insecticide Resistance

  • Chapter

Abstract

Insecticide resistance in insects was first genetically analyzed nearly 40 years ago when Dickson (1941) reported that resistance to HCN fumigation in the California red scale, Aonidietta auveantii, was inherited as a sex-linked, incompletely dominant character. Shortly following this, Yust et al. (1943) obtained similar results. In a modern sense, however, one may say that the age of insecticide resistance actually started with the initiation of worldwide usage of synthetic chlorinated hydrocarbon insecticides.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agatsuma, T., Shiroishi, T., and Takeuchi, T., 1977, Genetic studies on LDH isozymes in the house fly, Musca domestica, Japan. J. Genet., 52:149.

    Article  Google Scholar 

  • Baker, R. H., and Sakai, R. K., 1976, Male-determining factor on chromosome 3 in the mosquito, Culex tvitaeniovhynchus, J. Heved., 67:289.

    CAS  Google Scholar 

  • Baker, R. H., and Rabbani, H. G., 1970, Complete linkage in females of Culex tvitaeniovhynchus mosquitoes, J. Eeved.., 61:59.

    CAS  Google Scholar 

  • Baker, R. H., Sakai, R. K., and Mian, A., 1971, Linkage group-chromosome correlation in Culex tvitaeniovhynchus, Science, 171:585.

    Article  PubMed  CAS  Google Scholar 

  • Bodenstein, G., 1939, Die Ausloslung von Modifikationen und Mutationen bei Musca domestica L., Roux’ Avch. Entwickle 140:614.

    Article  Google Scholar 

  • Bridges, C. B., and Brehme, K. S., 1944, “The Mutants of Dvosophila melanogastev,” Carnegie Inst. Washington Publ. 552, Washington, D.C.

    Google Scholar 

  • Brown, A. W. A., 1959, Inheritance of insecticide resistance and tolerance, Misc. Publ. Entomol. Soc. Amev., 1:20.

    Google Scholar 

  • Cerf, D. C., and Georghiou, G. P., 1974, Cross resistance to juvenile hormone analogs in insecticide-resistant strains of Musca domestica L., Pestic. Sci., 5:759.

    Article  CAS  Google Scholar 

  • Craig, G. B., and Hickey, W. A., 1967, Genetics of Aedes aegypti, in: “Genetics of Insect Vectors of Disease,” Wright, J. W., and Pal, R., ed., pp. 67–131, Elsevier, Amsterdam.

    Google Scholar 

  • Crow, J. F., 1954, Analysis of a DDT-resistant strain of Dvosophila, J. Econ. Entomol., 47:393.

    Google Scholar 

  • Devonshire, A. L., and Sawicki, R. M., 1975, The importance of the decreased susceptibility of acetylcholinesterase in the resistance to organophosphorus insecticides, in: “Environmental Quality and Safety,” Special Issue, Proc. 3rd Internat. Congr. Pestic. Chemists, Helsinki, p. 441.

    Google Scholar 

  • Dickson, R. C., 1941, Inheritance of resistance to HCN fumigation in the California red scale, Eilgardia, 13:515.

    CAS  Google Scholar 

  • Dittrich, V., 1972, Phenotypic expression of gene OP for resistance in two-spotted spider mites tested with various organophos-phates, J. Econ. Entomol., 65:1248.

    PubMed  CAS  Google Scholar 

  • Farnham, A. W., 1973, Genetics of resistance of pyrethroid-selected houseflies, Musca domestica L., Pestic. Sci., 4:513.

    Article  CAS  Google Scholar 

  • Franco, M. G., and Oppenoorth, F. J., 1962, Genetical experiments on the gene for low aliesterase activity and organophosphate resistance in Musca domestica L., Entomol. Exp. Appl., 5:119.

    Article  Google Scholar 

  • Gargan, T. S., II, and Barr, A. R., 1977, Inheritance of an esterase locus in Culex pipiens, Ann. Entomol. Soc. Amer., 70:402

    CAS  Google Scholar 

  • Georghiou, G. P., 1965, Genetic studies on insecticide resistance, Adv. Vest Control Res., 6:171.

    CAS  Google Scholar 

  • Georghiou, G. P., 1969, Genetics of resistance to insecticides in houseflies and mosquitoes, Exp. Parasitol., 26:224.

    Article  PubMed  CAS  Google Scholar 

  • Georghiou, G. P., and Pasteur, N., 1978, Electrophoretic esterase patterns in insecticide-resistant and susceptible mosquitoes, J. Econ. Entomol., 71:201.

    PubMed  CAS  Google Scholar 

  • Georghiou, G. P., and Taylor, C. E., 1977a, Genetic and biological influences in the evolution of insecticide resistance, J. Econ. Entomol., 70:319

    PubMed  CAS  Google Scholar 

  • Georghiou, G. P., and Taylor, C. E., 1977b, Operational influences in the evolution of insecticide resistance, J. Econ. Entomol., 70:653.

    PubMed  CAS  Google Scholar 

  • Grigolo, A., and Oppenoorth, F. J., 1966, The importance of DDT-dehydrochlorinase for the effect of the resistance gene kdr in the housefly Musca domestica L., Genetica, 37:159.

    Article  PubMed  CAS  Google Scholar 

  • Harrison, C. M., 1951, Inheritance of resistance to DDT in the housefly, Musca domestica L., Nature, 167:855.

    Article  PubMed  CAS  Google Scholar 

  • Hiroyoshi, T., 1960, Some new mutants and linkage groups of the house fly, J. Econ. Entomol., 53:985.

    Google Scholar 

  • Hiroyoshi, T., 1961, The linkage map of the house fly, Musca domestica L., Genetics, 46:1373.

    PubMed  CAS  Google Scholar 

  • Horoyoshi, T., 1964, Sex-limited inheritance and abnormal sex ratio in strains of the housefly, Genetics, 50:373.

    Google Scholar 

  • Hiroyoshi, T., 1977, Some new mutants and revised linkage maps of the housefly, Musca domestica L., Japan. J. Genet., 52:275.

    Article  Google Scholar 

  • Hiroyoshi, T., and Fukumori, Y., 1977, On the IIIM-type houseflies frequently appeared in Japan, Japan. J. Genet., 53:443 (Abstr. in Japanese).

    Google Scholar 

  • Hiroyoshi, T., and Fukumori, Y., 1978, On the sex-determination in wild populations of the housefly, Japan. J. Genet., 54:420 (Abstr. in Japanese).

    Google Scholar 

  • Hoskins, W. M., and Gordon, H. T., 1956, Arthropod resistance to chemicals, Ann. Rev. Entornol., 1:89.

    Article  CAS  Google Scholar 

  • Hoyer, R. F., and Plapp, F. W., Jr., 1966, A gross genetic analysis of two DDT-resistant house fly strains, J. Econ. Entornol., 59:495.

    CAS  Google Scholar 

  • Hoyer, R. F., and Plapp, F. W., Jr., 1968, Insecticide resistance in the house fly: Identification of a gene that confers resistance to organotin insecticides and acts as an intensifier of parathion resistance., J. Eoon. Entornol., 61:1269.

    CAS  Google Scholar 

  • Hoyer, R. F., Plapp, F. W., and Orchard, R. D., 1965, Linkage relationships of several insecticide resistance factors in the housefly (Musca domestica L.), Entornol. Exp. Appl., 8:65.

    Article  Google Scholar 

  • Iqbal, M. P., Tahir, M. K., Sakai, R. K., and Baker, R. H., 1973, Linkage groups and recombination in the malaria mosquito, J. Hered., 64:133.

    PubMed  CAS  Google Scholar 

  • Kerr, R. W., 1960, Sex-limited DDT-resistance in houseflies, Nature, 185:868.

    Article  Google Scholar 

  • Kerr, R. W., 1961, Inheritance of DDT resistance involving the Y chromosome in the housefly (Musca domestica L.), Aust. J. Biol. Sci., 14:605.

    Google Scholar 

  • Kerr, R. W., 1970, Inheritance of DDT resistance in a laboratory colony of the housefly, Musca domestica, Aust. J. Biol. Sci., 23:377.

    Google Scholar 

  • Khan, M. A. Q., 1970, Genetic and biochemical characteristics of cyclodiene epoxidase in the housefly, Biochem. Pharmacol., 19:903.

    Article  PubMed  CAS  Google Scholar 

  • Khan, M. A. Q., Chang, J. L., Sutherland, D. J., Rosen, J. D., and Kamal, A., 1970, House fly microsomal oxidation of some foreign compounds, J. Econ. Entornol., 63:1807.

    CAS  Google Scholar 

  • Khan, M. A. Q., Morimoto, R. I., Bederka, J. P., Jr., and Runnels, J. M., 1973, Control of the microsomal mixed-function oxidase by Ox 2 and Ox 5 genes in houseflies, Biochem. Genet., 10:243.

    Article  PubMed  CAS  Google Scholar 

  • Kitzmiller, J. B., 1976, Genetics, cytogenetics, and evolution of mosquitoes, Adv. Genet., 18:315.

    Article  PubMed  CAS  Google Scholar 

  • Laven, H., 1967, Formal genetics of Culex pipiens, in: “Genetics of Insect Vectors of Disease,” Wright, J. W., and Pal, R., ed., pp. 17–65, Elsevier, Amsterdam.

    Google Scholar 

  • Lewis, J. B., 1969, Detoxication of diazinon by subcellular fractions of diazinon-resistant and susceptible houseflies, Nature, 224:917.

    Article  PubMed  CAS  Google Scholar 

  • Lichtwardt, E. T., 1964, A mutant linked to the DDT-resistance of an Illinois strain of house flies, Entornol. Exp. Appl., 7:296.

    Article  Google Scholar 

  • Lindsley, D. L., and Grell, E. H., 1967, “Genetic Variations of Drosophila me!anogaster,” Carnegie Inst. Washington Publ. 627, Washington, D. C.

    Google Scholar 

  • Lovell, J. B., and Kearns, C. W., 1959, Inheritance of DDT-dehydro-chlorinase in the house fly, J. Econ. Entornol., 52:931.

    CAS  Google Scholar 

  • McDonald, I. C., Evenson, P., Nickel, C. A., and Johnson, O. A., 1978, House fly genetics: Isolation of a female determining factor on chromosome 4, Ann. Entomol. Soc. Amer., 71:692.

    Google Scholar 

  • Milani, R., 1954, The genetics of the house fly. Preliminary note, Atti IXth Congr. Internat. Genet., Bellagio, 1953, Caryologia, Suppl., p. 791.

    Google Scholar 

  • Milani, R., 1956, Mendelian inheritance of knock-down resistance to DDT and correlation between knock-down and mortality in Musca domestica L., Selected Sei. Papers Istit. Super. Sanith, I, Part 1, p. 176.

    Google Scholar 

  • Milani, R., 1961, Results of genetic research on Musca domestica L., Atti Assoc. Genet. Ital., 6:427.

    Google Scholar 

  • Milani, R., 1967, The genetics of Musca domestica and of other muscoid flies, in: “Genetics of Insect Vectors of Disease,” Wright, J. W., and Pal, R., ed., pp. 315–369, Elsevier, Amsterdam.

    Google Scholar 

  • Milani, R., 1975, The housefly, Musca domestica, in: “Handbook of Genetics. Vol. 3,” King, R. C., ed., pp. 377–399, Plenum Press, New York.

    Google Scholar 

  • Milani, R., and Franco, M. G., 1959, Comportamento ereditario della resistenza al DDT in incroci tra il ceppo Orlando-R e ceppo kdrekdr + di Musca domestica L., Symp. Genet. Biol. Ital., 6:269.

    Google Scholar 

  • Motoyama, N., and Dauterman, W. C., 1978, Molecular weight, subunits, and multiple forms of glutathione S-transferase from the house fly, Insect Biochem., 8:337.

    Article  CAS  Google Scholar 

  • Motoyama, N., and Plapp, F. W., Jr., 1977, Genetic studies on glutathione-dependent reactions in resistant strains of the house fly, Musca domestica L., Pestic. Biochem. Physiol., 7:443.

    Article  CAS  Google Scholar 

  • Narang, S., Bhalla, S. C., and Narang, N., 1977, Isozymes of Culex p. fatigans: I. An esterase locus in linkage group III and its variability in natural populations, J. Hered., 68:95.

    PubMed  CAS  Google Scholar 

  • Nickel, C. A., and Wagoner, D. E., 1970, Some new mutants of house flies and their linkage groups and map positions, J. Econ. Entomol., 63:1385.

    PubMed  CAS  Google Scholar 

  • O’Brien, R. D., Tripathi, R. K., and Howell, L. L., 1978, Substrate preference of wild and mutant house fly acetylcholinesterase and a comparison with the bovine erythrocyte enzyme, Biochim. Biophys. Acta, 526:129.

    PubMed  Google Scholar 

  • Ogita, Z., 1958, The genetical relation between resistance to insecticides in general and that to phenylthiourea (PTU) and phenylurea (PU) in Drosophila melanogaster, Botyu-Kagaku, 23:188.

    Google Scholar 

  • Ogita, Z., and Hiroyoshi, T., 1965, Further genetico-biochemical study on amylase-isoenzymes in the house fly, Japan. J. Genet., 40:411.

    Google Scholar 

  • Ogita, Z., and Kasai, T., 1965a, Genetic control of multiple molecular forms of the acid phosphomonoesterases in the housefly, Musca domestica, Japan. J. Genet., 40:185.

    Article  Google Scholar 

  • Ogita, Z., and Kasai, T., 1965b, Genetic control of multiple esterases in Musca domestica, Japan. J. Genet., 40:1.

    Article  Google Scholar 

  • Ogita, Z., and Kasai, T., 1965c, A genetic analysis of synergistic action of sulfonamide derivatives with DDT against houseflies (Musca domestica), Botyu-Kagaku, 30:119.

    CAS  Google Scholar 

  • Oppenoorth, F. J., 1959, Genetics of resistance to organophosphorus compounds and low ali-esterase activity in the housefly, Entomol. Exp. Appl., 2:304.

    Article  CAS  Google Scholar 

  • Oppenoorth, F. J., 1979, Localization of the acetylcholinesterase gene in the housefly, Musca domestica, Entomol. Exp. Appl., 25:115.

    Article  Google Scholar 

  • Oppenoorth, F. J., and Houx, N. W. H., 1968, DDT-resistance in the housefly caused by microsomal degradation, Entomol. Exp. Appl., 11:81.

    Article  CAS  Google Scholar 

  • Oppenoorth, F. J., and Nasrat, G. E., 1966, Genetics of dieldrin and 03b3-BHC resistance in the housefly, Entomol. Exp. Appl., 9:223.

    Article  CAS  Google Scholar 

  • Oppenoorth, F. J., and van Asperen, K., 1960, Allelic genes in the housefly producing modified enzymes that cause organophosphate resistance, Science, 132:298.

    Article  PubMed  CAS  Google Scholar 

  • Oppenoorth, F. J., and Welling, W., 1976, Biochemistry and physiology of resistance, in: “Insecticide Biochemistry and Physiology,” Wilkinson, C. F., ed., pp. 507–551, Plenum Press, New York.

    Google Scholar 

  • Oppenoorth, F. J., Rupes, V., El Bashir, S., Houx, N. W. H., and Voerman, S., 1972, Glutathione-dependent degradation of para-thion and its significance for resistance in the housefly, Pestic. Biochem. Physiol., 2:262.

    Article  CAS  Google Scholar 

  • Oppenoorth, F. J., Smissaert, H. R., Welling, W., van der Pas, L. T. J., and Hitman, K. T., 1977, Insensitive acetylcholinesterase, high glutathione-S-transferase, and hydrolytic activity as resistance factors in a tetrachlorvinphos-resistant strain of house fly, Pestic. Biochem. Physiol., 7:34.

    Article  CAS  Google Scholar 

  • Perje, A. M., 1948, Studies on the spermatogenesis in Musca domes-tica, Eereditas, 34:209.

    Google Scholar 

  • Plapp, F. W., Jr., 1970, Inheritance of dominant factors for resistance to carbamate insecticides in the house fly, J. Econ. Entomol., 63:138.

    PubMed  Google Scholar 

  • Plapp, F. W., Jr., 1976, Biochemical genetics of insecticide resistance, Ann. Rev. Entomol., 21:179.

    Article  CAS  Google Scholar 

  • Plapp, F. W., Jr., and Casida, J. E., 1969, Genetic control of house fly NADPH-dependent oxidases: Relation to insecticide chemical metabolism and resistance, J. Econ. Entomol., 62:1174.

    PubMed  CAS  Google Scholar 

  • Plapp, F. W., Jr., and Tripathi, R. K., 1978, Biochemical genetics of altered acetylcholinesterase resistance to insecticides in the house fly, Biochem. Genet., 16:1.

    Article  PubMed  CAS  Google Scholar 

  • Plapp, F. W., Jr., and Vinson, S. B., 1973, Juvenile hormone analogs: Toxicity and cross-resistance in the housefly, Pestic. Biochem. Physiol., 3:131.

    Article  CAS  Google Scholar 

  • Plapp, F. W., Jr., Tate, L. G., and Hodgson, E., 1976, Biochemical genetics of oxidative resistance to diazinon in the house fly, Pestic. Biochem. Physiol., 6:175.

    Article  CAS  Google Scholar 

  • Rupes, V., and Pinterová, J., 1975, Genetic analysis of resistance to DDT, methoxychlor and fenitrothion in two strains of housefly (Musca domestica),, Entomol. Exp. Appl., 18:480.

    Article  CAS  Google Scholar 

  • Sakai, R. K., Iqbal, M. P., and Baker, R. H., 1973, Genetics of alkaline phosphatase in a mosquito Culex tritaeniorhynchus, Ann. Entomol. Soc. Amer., 66:913.

    Google Scholar 

  • Sawicki, R. M., 1973a, Resistance to insecticides in the SKA strain of houseflies, Report Rothamsted Exp. Station for 1972, pp. 168–181.

    Google Scholar 

  • Sawicki, R. M., 1973b, Resynthesis of multiple resistance to organo-phosphorus insecticides from strains with factors of resistance isolated from the SKA strain of house flies, Pestic. Sci., 4:171.

    Article  CAS  Google Scholar 

  • Sawicki, R. M., 1973c, Recent advances in the study of the genetics of resistance in the housefly, Musca domestica, Pestic. Sci., 4:501.

    Article  CAS  Google Scholar 

  • Sawicki, R. M., 1974, Genetics of resistance of a dimethoate-selected strain of houseflies (Musca domestica L.) to several insecticides and methylenedioxyphenyl synergists, J. Agr. Food Chem., 22:344.

    Article  CAS  Google Scholar 

  • Sawicki, R. M., and Farnham, A. W., 1967, The use of visible mutant markers in the study of resistance of house flies to insecticides, Proc. 4th British Insectic. Fungic. Confer., 1967:355.

    Google Scholar 

  • Sawicki, R. M., and Farnham, A. W., 1968, Genetics of resistance to insecticides of the SKA strain of Musca domestica, III. Location and isolation of the factors of resistance to dieldrin, Entomol. Exp. Appl., 11:133.

    Article  CAS  Google Scholar 

  • Sawicki, R. M., and Lord, K. A., 1970, Some properties of a mechanism delaying penetration of insecticides into houseflies, Pestic. Sci., 1:213.

    Article  CAS  Google Scholar 

  • Schafer, J. A., and Terriere, L. C., 1970, Enzymatic and physical factor in house fly resistance to naphthalene, J. Econ. Entomol., 63:787.

    PubMed  CAS  Google Scholar 

  • Shono, T., 1974a, Studies on the mechanism of resistance to diazinon-resistant Hokota strain of houseflies. II. In vitro degradation of diazoxon, Botyu-Kagaku, 39:54.

    CAS  Google Scholar 

  • Shono, T., 1974b, Studies on the mechanism of resistance in diazinon-resistant Hokota strain of houseflies. III. Diazinon degradation by glutathione-S-transferase, Botyu-Kagaku, 39:75.

    CAS  Google Scholar 

  • Shono, T., 1974c, Studies on the mechanism of resistance in diazinon-resistant Hokota strain of houseflies. IV. Diazinon metabolism by mixed-function oxidase, Botyu-Kagaku, 39:80.

    CAS  Google Scholar 

  • Stanton, R. H., Plapp, F. W., Jr., White, R. A., and Agosin, M., 1978, Induction of multiple cytochrome P-450 species in housefly microsomes: SDS-gel electrophoresis studies, Comp. Biochem. Physiol., B. Comp. Biochem., 61:291.

    Article  Google Scholar 

  • Steiner, W. W. M., and Joslyn, D. J., 1979, Electrophoretic techniques for the genetic study of mosquitoes, Mosq. News, 39:35.

    CAS  Google Scholar 

  • Stone, B. F., 1968, A formula for determining degree of dominance in cases of monofactorial inheritance of resistance to chemicals, Bull. WHO, 38:325.

    PubMed  CAS  Google Scholar 

  • Sullivan, R. L., 1961, Linkage and sex limitation of several loci in the housefly, J. Reved., 52:282.

    CAS  Google Scholar 

  • Tabachnick, W. J., and Powell, J. R., 1978, Genetic structure of the East African domestic populations of Aedes aegypti, Nature, 272:535.

    Article  CAS  Google Scholar 

  • Tate, L. G., Plapp, F. W., Jr., and Hodgson, E., 1974, Genetics of cytochrome P-450 in two insecticide-resistant strains of the housefly, Musca domestica L., Biochem. Genet., 11:49.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, C. E., and Georghiou, G. P., 1979, Suppression of insecticide resistance by alteration of gene dominance and migration, J. Econ. Entornol., 72:105.

    Google Scholar 

  • Tripathi, R. K., Telford, J. N., and O’Brien, R. D., 1978, Molecular and structural characteristics of house fly brain acetylcholinesterase, Biochem. Biophys. Acta, 525:103.

    PubMed  CAS  Google Scholar 

  • Tsukamoto, M., 1959, Metabolic fate of DDT in Dvosophila melanogas-tev. I. Identification of a non-DDE metabolite, Botyu-Kagaku, 24:141.

    CAS  Google Scholar 

  • Tsukamoto, M., 1963, The log dosage-probit mortality curve in genetic research of insect resistance to insecticides, Botyu-Kagaku, 28:91.

    Google Scholar 

  • Tsukamoto, M., 1964, Method for the linkage-group determination of insecticide-resistance factors in the housefly, Botyu-Kagaku, 29:51.

    Google Scholar 

  • Tsukamoto, M., 1965, The estimation of recombination values in back-cross data when penetrance is incomplete, with a special reference to its application to genetic analysis of insecticide-resistance, Japan. J. Genet., 3:159.

    Article  Google Scholar 

  • Tsukamoto, M., 1969, Biochemical genetics of insecticide resistance in the housefly, Residue Rev., 25:289.

    PubMed  CAS  Google Scholar 

  • Tsukamoto, M., and Ogaki, M., 1953, Inheritance of resistance to DDT in Drosophila melanogastev, Botyu-Kagaku, 18:39.

    CAS  Google Scholar 

  • Tsukamoto, M., and Suzuki, R., 1963, Communication to World Health Organization, WHO Inf. Civ. Insectic. Resist., 46:20.

    Google Scholar 

  • Tsukamoto, M., and Suzuki, R., 1964, Genetic analyses of DDT-resis-tance in two strains of the housefly, Musca domestica L., Botyu-Kagaku 29:76.

    Google Scholar 

  • Tsukamoto, M., and Suzuki, R., 1966, Genetic analyses of diazinon-resistance in the house fly, Botyu-Kagaku, 31:1.

    Google Scholar 

  • Tsukamoto, M., Baba, Y., and Hiraga, S., 1961, Mutation and linkage groups in Japanese strains of the housefly, Japan. J. Genet., 36:168.

    Article  Google Scholar 

  • Tsukamoto, M., Narahashi, T., and Yamasaki, T., 1965, Genetic control of low nerve sensitivity to DDT in insecticide-resistant house-flies, Botyu-Kagaku 30:128.

    Google Scholar 

  • Tsukamoto, M., Shrivastava, S. P., and Casida, J. E., 1968, Biochemical genetics of house fly resistance to carbamate insecticide chemicals, J. Econ. Entomol., 61:51.

    Google Scholar 

  • van Asperen, K., 1964, Biochemistry and genetics of esterases in houseflies (Musca domestica) with special reference to the development of resistance to organophosphorus compounds. Entomol. Exp. Appl., 7:205.

    Article  Google Scholar 

  • Velthuis, H. H., and van Asperen, K., 1963, Occurrence and inheritance of esterases in Musca domestica, Entomol. Exp. Appl., 6:79.

    Article  CAS  Google Scholar 

  • Wagoner, D. E., 1967, Linkage group-karyotype correlation in the house fly determined by cytological analysis of X-ray induced translocations, Genetics, 57:729.

    PubMed  CAS  Google Scholar 

  • Wagoner, D. E., 1969, Linkage group-karyotype correlation in the house fly, Musca domestica L., confirmed by cytological analysi of X-ray induced Y-autosomal translocations, Genetics, 62:115.

    PubMed  CAS  Google Scholar 

  • Wright, J. W., and Pal, R., ed., 1967, “Genetics of Insect Vectors of Disease,” Elsevier, Amsterdam.

    Google Scholar 

  • Yamamoto, I., and Casida, J. E., 1966, C-Dimethyl pyrethrin II analogs from oxidation of pyrethrin I., allethrin, dimethrin, and phthalthrin by house fly enzyme systems, J. Econ. Entomol., 59:1542.

    CAS  Google Scholar 

  • Yu, S. J., and Terriere, L. C., 1978, Metabolism of juvenile hormone I by microsomal oxidase, esterase, and epoxide hydrase of Musca domestica and some comparisons with Phovmia vegina and Sarcophaga bullata, Pestic. Biochem. Physiol., 9:237.

    Article  CAS  Google Scholar 

  • Yust, H. R., Nelson, H. D., and Busbey, R. L., 1943, Comparative susceptibility of two strains of California red scale to HCN, with special reference to the inheritance of resistance, J. Econ. Entomol., 36:744.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Tsukamoto, M. (1983). Methods of Genetic Analysis of Insecticide Resistance. In: Georghiou, G.P., Saito, T. (eds) Pest Resistance to Pesticides. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4466-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4466-7_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4468-1

  • Online ISBN: 978-1-4684-4466-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics