Skip to main content

Resistance to Insecticides Due to Reduced Sensitivity of the Nervous System

  • Chapter
Pest Resistance to Pesticides

Abstract

In order to understand the mechanism underlying the physiological resistance of an insect to an insecticide, we must know how the insecticide exerts its toxic action. Among a number of processes involved, three factors have been regarded as playing the most important roles in insect resistance to insecticides: penetration of insecticides through the cuticle, detoxication, and sensitivity of the target site. Penetration and detoxication mechanisms are discussed in other papers of this volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, M. E., and Miller, T. A., 1979, Site of action of pyrethroids: Repetitive “backfiring” in flight motor units of house fly, Pestic. Biochem. Physiol., 11:218.

    Article  CAS  Google Scholar 

  • Babers, F. H., and Pratt, J. J., Jr., 1953, Resistance of insects to insecticides: The metabolism of injected DDT, J. Econ. Entomol., 46:977.

    CAS  Google Scholar 

  • Boistel, J., and Coraboeuf, E., 1954, Potentiel de membrane et potentiels d’action de nerf d’insecte recueillis à l’aide de microélectrodes intracellulaires, C. R. Acad. Sci., Paris, 238:2116.

    CAS  Google Scholar 

  • Briggs, G. G., Elliott, M., Farnham, A. W., and Janes, N. F., 1974, Structural aspects of the knockdown of pyrethroids, Pestic. Sci., 5:643.

    Article  CAS  Google Scholar 

  • Brooks, G. T., 1960, Mechanisms of resistance of the adult housefly (Musca domestica) to “cyclodiene” insecticides, Nlature, 186:96.

    Article  CAS  Google Scholar 

  • Browne, L. B., and Kerr, R. W., 1967, The response of the labellar taste receptors of DDT-resistant and non-resistant houseflies (Musca domestica), Entomol. Exp. Appl., 10:337.

    Article  Google Scholar 

  • Burt, P. E., and Goodchild, R. E., 1971, The site of action of Pyrethrin I in the nervous system of the cockroach Periplaneta americana L., Entomol. Exp. Appl., 14:179.

    Article  CAS  Google Scholar 

  • Camougis, G., 1973, Mode of action of pyrethrum on arthropod nerves, in: “Pyrethrum: The Natural Insecticide,” J. E. Casida, ed., pp. 211–222, Academic Press, New York.

    Google Scholar 

  • Clements, A. N., and May, T. E., 1977, The actions of pyrethroids upon the peripheral nervous system and associated organs in the locust, Pestic. Sci., 8:661.

    Article  CAS  Google Scholar 

  • Conti, F., Hille, B., Neumcke, B., Nonner, W., and Stämpfli, R., 1976, Conductance of the sodium channel in myelinated nerve fibres with modified sodium inactivation, J. Physiol., 262:729.

    PubMed  CAS  Google Scholar 

  • Coraboeuf, E., and Boistel, J., 1955, Quelques aspects de la micro-physiologie nerveuse chez les insectes. Colloq. Internat. Cent. Nat. Rech. Sci. No. 67, Microphysiologie Comparée des Elements Excitables, pp. 57–72.

    Google Scholar 

  • Evans, M. H., 1976, End-plate potentials in frog muscle exposed to a synthetic pyrethroid, Pestic. Biochem. Physiol., 6:547.

    Article  CAS  Google Scholar 

  • Farley, J. M., Narahashi, T., and Holan, G., 1979, The mechanism of action of a DDT analog on the crayfish neuromuscular junction, Neurotoxicology, 1:191.

    CAS  Google Scholar 

  • Hall, L. M., Gitschier, J., and Strichartz, G. R., 1979, Saxitoxin binding to sodium channels from wild-type and mutant Drosophila melanogaster, 9th Ann. Mtg. Soc. Neurosci, Abstr., p. 247.

    Google Scholar 

  • Hille, B., 1968, Pharmacological modifications of the sodium channels of frog nerve, J. Gen. Physiol., 51:199.

    Article  PubMed  CAS  Google Scholar 

  • Hille, B., 1975, The receptor for tetrodotoxin and saxitoxin: A structural hypotehsis, Biophys. J., 15:615.

    Article  PubMed  CAS  Google Scholar 

  • Hille, B., 1977, Local anesthetics: Hydrophilic and hydrophobic pathways for the drug receptor interaction, J. Gen. Physiol., 69:497.

    Article  PubMed  CAS  Google Scholar 

  • Holan, G., 1971, Rational design of degradable insecticides, Nature, 232:644.

    Article  PubMed  CAS  Google Scholar 

  • Kao, C. Y., and Nishiyama, A., 1965, Actions of saxitoxin on peripheral neuromuscular systems, J. Physiol., 180:50.

    PubMed  CAS  Google Scholar 

  • Lund, A. E., and Narahashi, T., 1979, The effect of the insecticide tetramethrin on the sodium channel of crayfish giant axons, 9th Ann. Mtg. Soc. Neurosci. Abstr., p. 293.

    Google Scholar 

  • Matsumura, F., and Hayashi, M., 1966, Dieldrin: Interaction with nerve components of cockroaches, Science, 153:757.

    Article  PubMed  CAS  Google Scholar 

  • Matsumura, F., and Hayashi, M., 1969, Dieldrin resistance. Biochemical mechanisms in the German cockroach, J. Agr. Food Chem., 17:231.

    Article  CAS  Google Scholar 

  • Miyake, S. S., Kearns, C. W., and Lipke, H., 1957, Distribution of DDT-dehydrochlorinase in various tissues of DDT-resistant house flies, J. Econ. Entomol., 50:359.

    Google Scholar 

  • Moore, J. W., Narahashi, T., and Shaw, T. I., 1967, An upper limit to the number of sodium channels in nerve membrane? J. Physiol., 188:99.

    PubMed  CAS  Google Scholar 

  • Narahashi, T., 1962a, Effect of the insecticide allethrin on membrane potentials of cockroach giant axons, J. Cell. Comp. Physiol., 59:61.

    Article  CAS  Google Scholar 

  • Narahashi, T., 1962b, Nature of the negative after-potential increased by the insecticide allethrin in cockroach giant axons, J. Cell. Comp. Physiol., 59:67.

    Article  CAS  Google Scholar 

  • Narahashi, T., 1964, Insecticide resistance and nerve sensitivity, Japan. J. Med. Sci. Biol., 17:46.

    CAS  Google Scholar 

  • Narahashi, T., 1971, Effects of insecticides on excitable tissues, in: “Advances in Insect Physiology,” J. W. L. Beament, J. E. Treherne and V. B. Wigglesworth, eds., Vol. 8, pp. 1–93, Academic Press, London and New York.

    Google Scholar 

  • Narahashi, T., 1976, Effects of insecticides on nervous conduction and synaptic transmission, in: “Insecticide Biochemistry and Physiology,” C. F. Wilkinson, ed., pp. 327–352, Plenum Press, New York.

    Google Scholar 

  • Narahashi, T., and Anderson, N. C., 1967, Mechanism of excitation block by the insecticide allethrin applied externally and internally to squid giant axons, Toxicol. Appl. Pharmacol., 10:529.

    Article  PubMed  CAS  Google Scholar 

  • Narahashi, T., and Haas, H. G., 1967, DDT: Interaction with nerve membrane conductance changes, Science, 157:1438.

    Article  PubMed  CAS  Google Scholar 

  • Narahashi, T., and Haas, H. G., 1968, Interaction of DDT with the components of lobster nerve membrane conductance, J. Gen. Physiol., 51:177.

    Article  PubMed  CAS  Google Scholar 

  • Narahashi, T., and Lund, A. E., 1980, Giant axons as models for the study of the mechanism of action of insecticides, in: “Insect Neurobiology and Pesticide Action (Neurotox 79),” Proc. Soc.

    Google Scholar 

  • Chem. Ind. Symp., Univ. York, Sept. 3–7, 1979, pp. 497–505, Soc. Chem. Ind., London.

    Google Scholar 

  • Narahashi, T., and Yamasaki, T., 1960a, Mechanism of the after-potential production in the giant axons of the cockroach, J. Physiol., 151:75.

    CAS  Google Scholar 

  • Narahashi, T., and Yamasaki, T., 1960b, Mechanism of increase in negative after-potential by dicophanum (DDT) in the giant axons of the cockroach, J. Physiol., 152:122.

    CAS  Google Scholar 

  • Narahashi, T., and Yamasaki, T., 1960c, Behaviors of membrane potentials in the cockroach giant axons poisoned by DDT, J. Cell. Comp. Physiol., 55:131.

    Article  CAS  Google Scholar 

  • Narahashi, T., Moore, J. W., and Scott, R., 1964, Tetrodotoxin blockage of sodium conductance increase in lobster giant axons, J. Gen. Physiol., 47:965.

    Article  PubMed  CAS  Google Scholar 

  • Narahashi, T., Anderson, N. C., and Moore, J. W., 1967a, Comparison of tetrodotoxin and procaine in internally perfused squid giant axons, J. Gen. Physiol., 50:1413.

    Article  PubMed  CAS  Google Scholar 

  • Narahashi, T., Haas, H. G., and Therrien, E. F., 1967b, Saxitoxin and tetrodotoxin: Comparison of nerve blocking mechanism, Science, 157:1441.

    Article  PubMed  CAS  Google Scholar 

  • Narahashi, T., Frazier, D. T., and Yamada, M., 1970, The site of action and active form of local anesthetics, I, Theory and pH experiments with tertiary compounds, J. Pharmacol. Exp. Therap., 171:32.

    CAS  Google Scholar 

  • Neumcke, B., Nonner, W., and Stampfli, R., 1978, Gating currents in excitable membranes, in: “Internat. Rev. Biochem., Biochemistry of Cell Walls and Membranes II,” Vol. 19, J. C. Metcalfe, ed., pp. 129–155, Univ. Park Press, Baltimore.

    Google Scholar 

  • Perry, A. S., and Hoskins, W. M., 1951, Detoxification of DDT as a factor in the resistance of house flies, J. Picon. Entomol., 44:850.

    CAS  Google Scholar 

  • Pichon, Y., 1969a, Effets du D.D.T. sur la fibre nerveuse isolée d’insecte. Étude en courant et an voltage imposés, J. Physiol., Paris, 61 (Suppl. 1):162.

    Google Scholar 

  • Pichon, Y., 1969b, Aspects Electriques et Ioniques du Fonctionnement Nerveux chez les Insectes, Cas Particulier de la Chaine Nerveuse Abdominale d’une Blatte Periplaneta americana. L., These, Univ. Rennes.

    Google Scholar 

  • Pratt, J. J., Jr., and Babers, F. H., 1953, Sensitivity to DDT of nerve ganglia of susceptible and resistant house flies, J. Econ. Entomol., 46:700.

    CAS  Google Scholar 

  • Ritchie, J. M., 1979, A pharmacological approach to the structure of sodium channels in myelinated axons, Ann. Rev. Neuro Sci., 2:341.

    Article  CAS  Google Scholar 

  • Ritchie, J. M., Rogart, R. B., and Strichartz, G. R., 1976, A new method for labelling saxitoxin and its binding to non-myelinated fibres of the rabbit vagus, lobster walking leg, and garfish olfactory nerves, J. Physiol., 261:477.

    PubMed  CAS  Google Scholar 

  • Smyth, T., Jr., and Roys, C. C., 1955, Chemoreception in insects and the action of DDT, Biol. Bull., 108:66.

    Article  CAS  Google Scholar 

  • Steinburg, J., Kearns, C. W., and Bruce, W. N., 1950, Absorption and metabolism of DDT by resistant and susceptible house flies, J. Econ. Entomol., 43:214.

    Google Scholar 

  • Tahori, A. S., and Hoskins, W. M., 1953, The absorption, distribution, and metabolism of DDT in DDT-resistant houseflies, J. Econ. Entomol., 46:302, 829.

    Google Scholar 

  • Takeno, K., Nishimura, K., Parmentier, J., and Narahashi, T., 1977, Insecticide screening with isolated nerve preparations for structure-activity relationships., Pestic. Biochem. Physiol., 7:486.

    Article  CAS  Google Scholar 

  • Tsukamoto, M., and Suzuki, R., 1964, Genetic analysis of DDT-resistance in two strains of the house fly Musca domestica L., Botyu-Kagaku, 29:76.

    Google Scholar 

  • Tsukamoto, M., Narahashi, T., and Yamasaki, T., 1965, Genetic control of low nerve sensitivity to DDT in insecticide-resistant houseflies, Botyu-Kagaku, 30:128.

    Google Scholar 

  • van den Bercken, J., 1977, The action of allethrin on the peripheral nervous system of the frog, Pestic. Sci., 8:692.

    Article  Google Scholar 

  • Wang, C. M., Narahashi, T., and Scuka, M., 1972, Mechanism of negative temperature coefficient of nerve blocking action of allethrin, J. Pharmacol. Exp. Therap., 182:442.

    CAS  Google Scholar 

  • Weiant, E. A., 1955, Electrophysiological and behavioral studies on DDT-sensitive and DDT-resistant house flies, Ann. Entomol. Soc. Amer., 48:489.

    CAS  Google Scholar 

  • Wouters, W., and van den Bercken, J., 1978, Action of pyrethroids, Gen. Pharmacol., 9:387.

    Article  PubMed  CAS  Google Scholar 

  • Wouters, W., van den Bercken, J., and van Ginneken, A., 1977, Presynaptic action of the pyrethroid insecticide allethrin in the frog motor end plate, Europ. J. Pharmacol., 43:163.

    Article  CAS  Google Scholar 

  • Wu, C. H., van den Bercken, J., and Narahashi, T., 1975, The structure-activity relationship of DDT analogs in crayfish giant axons, Pestic. Biochem. Physiol., 5:142.

    Article  CAS  Google Scholar 

  • Wu, C. H., Oxford, G. S., Narahashi, T., and Holan, G., 1980, Interaction of a DDT-analog with the sodium channel of lobster axon, J. Pharmacol. Exp. Therap., 212:287.

    CAS  Google Scholar 

  • Yamasaki, T., and Ishii (Narahashi), T., 1952, Studies on the mechanism of action of insecticides (V), The effects of DDT on the synaptic transmission of the cockroach, Oyo-Kontyu (J. Nippon Soc. Appl. Entomol.), 8:111.

    Google Scholar 

  • Yamasaki, T., and Narahashi, T., 1957, Intracellular microelectrode recordings of resting and action potentials from the insect axon and the effects of DDT on the action potential, Studies on the mechanism of action of insecticides (XIV), Boytu-Kagaku, 22:305.

    CAS  Google Scholar 

  • Yamasaki, T., and Narahashi, T., 1958, Resistance of house flies to insecticides and the susceptibility of nerve to insecticides, Studies on the mechanism of action of insecticides (XVII), Botyu-Kagakuy 23:146.

    Google Scholar 

  • Yamasaki, T., and Narahashi, T., 1962, Nerve sensitivity and resistance to DDT in houseflies, Japan. J. Appl. Entomol. Zool., 6:293.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Narahashi, T. (1983). Resistance to Insecticides Due to Reduced Sensitivity of the Nervous System. In: Georghiou, G.P., Saito, T. (eds) Pest Resistance to Pesticides. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4466-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4466-7_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4468-1

  • Online ISBN: 978-1-4684-4466-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics