Skip to main content

Heat Exchangers in Cryocoolers

  • Chapter
Cryocoolers

Part of the book series: The International Cryogenics Monograph Series ((ICMS))

Abstract

Heat exchangers are devices which enhance the transfer of heat and are vital components of all cryocoolers. They exist in a wide variety of types, shapes, sizes, and arrangements and are made of all kinds of material. Metals are commonly used because of high thermal conductivity and relative ease of fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abadzic, E. E., and Scholz, H. W. (1973). “Coiled Tube Heat Exchangers.” Adv. Cryog. Eng. 18, 42–51.

    Google Scholar 

  • Afgan, N., and Schlünder, E. U. (1974). Heat Exchangers, Design and Theory Sourcebook. Scripta Book Co./McGraw-Hill Book Co., NY.

    Google Scholar 

  • Barron, R. (1966). Cryogenic Systems. McGraw-Hill Book Co., Toronto.

    Google Scholar 

  • Betts, D. S. (1974). Refrigeration and Thermometry below 1K. Sussex University Press, Falmer, Sussex (in the U.S., Crane Russak and Co., New York).

    Google Scholar 

  • Bretherton, A., Granville, W. H., and Harness, J. B. (1971). “Performance of Regenerators at Low Temperatures.” Adv. Cryog. Eng. 16, 333–341.

    Google Scholar 

  • Chellis, F. F., Hosmer, T. P., and Keller, E. (1971). “Closed Cycle Refrigeration for an Airborne Illuminator.” Adv. Cryog. Eng. 16, 214–220.

    Google Scholar 

  • Collins, S. C. (1966). “Helium Refrigeration and Liquefier.” Adv. Cryog. Eng. 11, 11–15.

    Google Scholar 

  • Collins, S. C., and Cannaday, R. L. (1958). Expansion Machines for Low Temperature Processes. Oxford University Press, Oxford, England.

    Google Scholar 

  • Coppage, J. (1952). “Heat-Transfer and Flow-Friction Characteristics of Porous Media.” Thesis, Stanford University, Stanford, California.

    Google Scholar 

  • Coppage, J. E., and London, A. L. (1953). “The Periodic-Flow Regenerator—A Summary of Design Theory.” Trans. ASME 75, 779–787.

    Google Scholar 

  • Coppage, J. E., and London, A. L. (1956). “Heat-Transfer and Flow-Friction Characteristics of Porous Media.” Chem. Eng. Prog. 52(2), (Feb) 56–57.

    Google Scholar 

  • Cowans, K. W. (1974). “A Countercurrent Heat Exchanger that Compensates Automatically for Maldistribution of Flow in Parallel Channels.” Adv. Cryog. Eng. 19, 437–444.

    Google Scholar 

  • Daniels, A., and du Pre, F. K. (1971). “Triple Expansion Stirling Cycle Refrigerator.” Adv. Cryog. Eng. 16, 178–184.

    Google Scholar 

  • Davies, S. J., and Singham, J. R. (1951). “Experiments on a Small Thermal Regenerator. General Discussion on Heat Transfer.” Proc. Inst. Mech. Eng. 434–435.

    Google Scholar 

  • Finegold, J. G., and Sterrett, R. H. (1978). “Stirling Engine Regenerators—Literature Review.” Report No. 5030–230, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California (July).

    Google Scholar 

  • Fleming, R. B. (1967). “The Effect of Flow Distribution in Parallel Channels of Counterflow Heat Exchangers.” Adv. Cryog. Eng. 12, 352–362.

    Google Scholar 

  • Fleming, R. B. (1968). “Regenerators in Cryogenic Refrigerators.” Tech. Rept. AFFDL-TR-68–143, Wright-Patterson Air Force Base, Dayton, Ohio (see also U.S. Patent 3,262,277, Fleming—July 26, 1966).

    Google Scholar 

  • Fleming, R. B. (1969). “A Compact Perforated Plate Heat Exchanger.” Adv. Cryog. Eng. 14, 197–204.

    Google Scholar 

  • Foster, W. G., and Murray, D. O. (1973). “Development Program for a Liquid Methane Heat Pipe.” Adv. Cryog. Eng. 18, 96–102.

    Google Scholar 

  • Furnas, C. (1932). “Heat Transfer from a Gas Stream to a Bed of Broken Solids.” Bull. U.S. Bur. of Mines, No. 361.

    Google Scholar 

  • Gifford, W. E., and Acharya, A. (1968). “Optimization of a Cryogenic Refrigerator Heat Exchanger.” Adv. Cryog. Eng. 13, 599–606.

    Google Scholar 

  • Gifford, W. E., Acharya, A., and Ackermann, R. A. (1969). “Compact Cryogenic Thermal Regenerator Performance.” Adv. Cryog. Eng. 14, 353–360.

    Google Scholar 

  • Gifford, W. E., and Acharya, A. (1970). “Low Temperature Regenerator Test Apparatus.” Adv. Cryog. Eng. 15, 436–442.

    Google Scholar 

  • Hahnemann, H. (1948). “Approximate Calculation of Thermal Ratios in Heat Exchangers Including Heat Conduction in the Direction of Flow.” N.G.T.E. Mem. 36, National Gas Turbine Establishment, Pyestock, U.K.

    Google Scholar 

  • Harris, W. S., Rios, P. A., and Smith, J. L. (1971). “The Design of Thermal Regenerators for Stirling Type Refrigerators.” Adv. Cryog. Eng. 16, 312–323.

    Google Scholar 

  • Haskin, W. L. (1967). “Cryogenic Heat Pipe.” Report No. AFFDL-TR-66–228, Wright-Patterson Air Force Base, Dayton, Ohio, June.

    Google Scholar 

  • Holman, J. P. (1976). Heat Transfer. 3rd Ed. McGraw-Hill Book Co., NY.

    Google Scholar 

  • Iliffe, C. E. (1948). “Thermal Analysis of the Contra-flow Regenerative Heat Exchanger.” Proc. Instn. Mech. Engrs. 159, 363–372.

    Article  Google Scholar 

  • Jakob, M. (1957). Heat Transfer. Vol. II. Wiley and Sons, New York (see Chapter 35, “Regenerators”).

    Google Scholar 

  • Johnson, J. E. (1952). “Regenerator Heat Exchangers for Gas Turbines.” U.K. Aero Res. Council, Tech. Report, R and M, No. 2630, U.K.

    Google Scholar 

  • Joy, P. (1972). “Optimum Cryogenic Heat Pipe Design.” Adv. Cryog. Eng. 17, 438–448.

    Google Scholar 

  • Kays, W., and London, A. L. (1966). Compact Heat Exchangers. 2nd Ed. McGraw-Hill Book Co., New York.

    Google Scholar 

  • Kenoldt, W. (1965). “Selected Examples of European Cryogenic Practice.” Adv. Cryog. Eng. 10, 392–404.

    Google Scholar 

  • Kim, J. C., and Qvale, E. B. (1971). “Analytical and Experimental Studies of Compact Wire-Screen Heat Exchangers.” Adv. Cryog. Eng. 16, 302–311.

    Google Scholar 

  • Kohler, J. W. L. (1968). “Computation of the Temperature Field of Regenerators with Temperature Dependent Parameters.” Proc. Second Int. Cryog. Eng. Conf. pp. 44–46, Brighton, U.K., May, Iliffe Sci. and Tech. Pubs. Ltd., Guildford, U.K.

    Google Scholar 

  • Kohler, J. W. L., Stevens, P. F., de Jonge, A. K., and Beuzekom, D. C. (1975). “Computation of Regenerators Used in Regenerative Refrigerators.” Cryogenics, 15, 521–531.

    Article  Google Scholar 

  • Kroeger, P. G. (1967). “Performance Deterioration in High Effectiveness Heat Exchangers Due to Axial Heat Conduction Effects.” Adv. Cryog. Eng. 12, 363–372.

    Google Scholar 

  • Kroeger, P. G. (1967). “Plated Tube Heat Exchanger: Analytical Investigation of a New Surface Concept.” Adv. Cryog. Eng. 12, 340–351.

    Google Scholar 

  • Lenfestey, A. G. (1961). “Low-Temperature Heat Exchangers.” Prog. Cryog. 3, 23–48.

    Google Scholar 

  • Lenfestey, A. G. (1968). “Compact Heat Exchanger Assemblies for Gas Separation Plants.” Proc. Second Int. Cryog. Eng. Conf., pp. 47–49, Iliffe Sci. and Tech. Pubs. Ltd., Guildford, U.K.

    Google Scholar 

  • Lins, R. C., and Elkan, M. A. (1975). “Design and Fabrication of Compact High-Effectiveness Cryogenic Heat Exchangers Using Wire Mesh Surfaces.” Adv. Cryog. Eng. 20, 283–299.

    Google Scholar 

  • Lounasmaa, O. V. (1974). Experimental Principles and Methods below 1 K. Academic Press, New York.

    Google Scholar 

  • Murray, J. A., Martin, B. W., Bayley, F. J., and Rapley, C. W. (1961). “Performance of Thermal Regenerators under Sinusoidal Flow Conditions.” Int. Heat-Trans. Conf., ASME 781–796.

    Google Scholar 

  • O’Neill, P. S., Gottzmann, C. F., and Terbot, J. W. (1972). “Novel Heat Exchanger Increases Cascade Cycle Efficiency for Natural Gas Liquefaction.” Adv. Cryog. Eng. 17, 420–437.

    Google Scholar 

  • Pron’ko, V. G., Amamchyan, R. G., Guilman, I. I., and Raygorodsky, A. I. (1976). “Some Problems of Using Adsorbents as a Matrix Material for Low-Temperature Regenerators of Cryogenic Refrigerators.” Proc. Sixth Cryog. Eng. Conf. (ed. K. Mendelssohn), pp. 86–88, I.P.C. Sci. and Tech. Press, Guildford, U.K.

    Google Scholar 

  • Rapley, C. (1960). “Heat Transfer in Thermal Regenerators.” M.Sc. Thesis, Durham University.

    Google Scholar 

  • Rios, P. A., and Smith, J. L. (1968). “The Effect of Variable Specific Heat of the Matrix on the Performance of Thermal Regenerators.” Adv. Cryog. Eng. 13, 566–573.

    Google Scholar 

  • Saunders, O., and Ford, H. (1940). “Heat Transfer in the Flow of Gas through a Bed of Solid Particles.” J. Iron Steel Inst., No. 1, 291.

    Google Scholar 

  • Saunders, O. A., and Smoleniec, S. (1948). “Heat Regenerators.” Proc. Seventh Int. Cong. App. Mech., Vol. 3, pp. 91–105.

    Google Scholar 

  • Schultz, B. H. (1951). “Regenerators with Longitudinal Heat Conduction.” J. Mech. E.ASME General Discussion in Heat Transfer.

    Google Scholar 

  • Schumann, T. E. W. (1929). “Heat Transfer to a Liquid Flowing through a Porous Prism.” J. Franklin Inst. 208, 405–416.

    Article  MATH  Google Scholar 

  • Scott, R. B. (1966). Cryogenic Engineering. Van Nostrand Co. Inc., New Jersey.

    Google Scholar 

  • Smith, J. L. (1965). “Some Aspects of the Selection of Regenerators.” Cryogenics, 5, 306–314.

    Article  Google Scholar 

  • Stuart, R. W., Cohen, B. M., and Hartwig, W. (1970). “Operation and Application of a Three-Stage Closed Cycle Regenerative Refrigerator in the 6.5 K Region.” Adv. Cryog. Eng. 15, 428–435.

    Google Scholar 

  • Timmerhaus, K. D., and Schoenhals, R. J. (1974). “Design and Selection of Cryogenic Heat Exchangers.” Adv. Cryog. Eng. 19, 445–462.

    Google Scholar 

  • Tipler, W. (1947). “A Simple Theory of the Heat Regenerator.” Tech. Report No. 1CT/14, Shell Petroleum Co. Ltd., Thornton Research Centre.

    Google Scholar 

  • Vasishta, V. (1969). “Heat-Transfer and Flow-Friction Characteristics of Compact Matrix Surfaces for Stirling Cycle Regenerators.” M.Sc. Thesis, University of Calgary.

    Google Scholar 

  • Vonk, G. (1969). “A New Type of Compact Heat Exchanger with a High Thermal Efficiency.” Adv. Cryog. Eng. 13, 582–589.

    Google Scholar 

  • Walker, G. (1961). “The Operational Cycle of the Stirling Engine with Particular Reference to the Function of the Regenerator.” J. Mech. Eng., Sci. 3, No. 4.

    Google Scholar 

  • Walker, G. (1980). Stirling Engines. Oxford University Press, Oxford.

    Google Scholar 

  • Walker, G., and Wan, W. K. (1972). “Heat Transfer and Flow Friction Characteristics of Dense Mesh Wire Screen Regenerator Matrices at Cryogenic Temperatures.” Proc. Fourth Int. Cryog. Eng. Conf., pp. 93–95, I.P.C. Sci. and Tech. Press, Guildford, U.K.

    Google Scholar 

  • Walker, G. (1982). Industrial Heat Exchangers: The User Basic Guide., Hemisphere Publishing Corp. Washington, D.C.

    Google Scholar 

  • Wan, W. K. (1971). “Heat-Transfer and Friction-Flow Characteristics of Dense-Mesh Wire-Screen Regenerator Matrices.” M.Sc. Thesis, University of Calgary.

    Google Scholar 

  • Ward, D. E. (1961). “Some Aspects of the Design and Operation of Low Temperature Regenerators.” Adv. Cryog. Eng. 6, 525–536.

    Google Scholar 

  • Weimer, R. F., and Hartzog, D. G. (1973). “Effects of Maldistribution on the Performance of Multistream, Multipassage Heat Exchangers.” Adv. Cryog. Eng. 18, 52–64.

    Google Scholar 

  • Wheatley, J. C., Allen, P. C., Knight, W. R., and Paulson, D. N. (1980). Principles of Liquids Working in Heat Engines. (In press). Dept. of Physics, Univ. of California at San Diego.

    Google Scholar 

  • Wittner, C. E. (1966). “Design of a Closed Cycle Helium Temperature Refrigerator.” Adv. Cryog. Eng. 11, 107–115.

    Google Scholar 

  • Zimmerman, J. E., and Radebaugh, R. (1977). “Operation of a SQUID in a Very Low-Power Cryocooler.” App. of Closed Cycle Cryocoolers to Small Superconducting Devices, Proc. of Conf. NBS, Boulder, Oct., pp. 59–66.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Walker, G. (1983). Heat Exchangers in Cryocoolers. In: Cryocoolers. The International Cryogenics Monograph Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4430-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4430-8_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4432-2

  • Online ISBN: 978-1-4684-4430-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics