Skip to main content

Frog Prey Capture Behavior: Between Sensory Maps and Directed Motor Output

  • Chapter
Advances in Vertebrate Neuroethology

Part of the book series: NATO Advanced Science Institutes Series ((NSSA,volume 56))

Abstract

In frog prey capture behavior an appropriate sensory stimulus at a given location in space triggers a complex movement directed toward the stimulus. We are interested in how the frog brain is organized so as to yield such a spatial correspondence between a stimulus and the resulting movement. Initial stages of the neuronal circuitry underlying prey capture appear to involve topographic sensory representations in the midbrain. The prey capture outputs are triggered or ballistic, suggesting that they are based on pattern generating circuitry at some unknown location in the brain. Given these considerations, one approach to the problem of the spatial correspondence between stimulus and movement is to ask how topographic sensory maps are linked to pattern generating circuitry. In this paper we will discuss several experiments directed at exploring this linkage. We will focus particularly on how our ideas about the organization which brings about an appropriate correspondence between input and output have evolved during the course of these studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Comer, C., and. Grobstein, P., 1978, Prey acquisition in atectal frogs. Brain Res., 153:217–221.

    Article  PubMed  CAS  Google Scholar 

  • Comer, C., and Grobstein, P., 1981a, Tactually elicited prey acquisition behavior in the frog, Rana pipiens, and a comparison with visually elicited behavior. J. Comp. Physiol., 142:141–150.

    Article  Google Scholar 

  • Comer, C., and Grobstein, P., 1981b, Involvement of midbrain structures in tactually and visually elicited prey acquisition behavior in the frog, Rana pipiens. J. Comp. Physiol., 142:151–160.

    Article  Google Scholar 

  • Comer, C., and Grobstein, P., 1981c, Organization of sensory inputs to the midbrain of the frog, Rana pipiens. J. Comp. Physiol., 142:161–168.

    Article  Google Scholar 

  • Ewert, J.-P., 1967a, Aktivierung der Verhaltensfolge beim Beutefang der Erdkröte (Bufo bufo) durch elektrische Mittelhirnreizung. Z. vergl. Physiol., 71:165–189.

    Article  Google Scholar 

  • Ewert, J.-P., 1967b, Elektrische Reizung des retinalen Projektionsfeldes im Mittelhirn der Erdkröte (Bufo bufo L.). Pflügers Arch. ges. Physiol., 295:90–98.

    Article  CAS  Google Scholar 

  • Ewert, J.-P., and Borchers, H.-W., 1971, Reaktionscharakteristik von Neuronen aus dem Tectum opticum und Subtectum der Erdkröte (Bufo bufo L.). Z. vergl. Physiol., 71:165–189.

    Article  Google Scholar 

  • Fite, K.V., 1969, Single unit analysis of binocular neurons in the frog optic tectum. Exp. Neurol., 24:475–486.

    Article  PubMed  CAS  Google Scholar 

  • Fite, K.V., 1973, The visual fields of the frog and toad: A comparative study. Behav. Biol., 9:707–718.

    Article  PubMed  CAS  Google Scholar 

  • Fukson, O.I., Berkinblit, M.B., and Feldman, A.G., 1980, The spinal frog takes into account the scheme of its body during the wiping reflex. Science, 209:1261–1263.

    Article  PubMed  CAS  Google Scholar 

  • Grobstein, P., Comer, C., and Kostyk, S., 1980, The potential binocular field and its tectal representation in Rana pipiens. J. Comp. Neurol., 190:175–185.

    Article  PubMed  CAS  Google Scholar 

  • Gordon, B., Moran, J., and Presson, J., 1979, Visual field deficits in cats with one eye rotated. Soc. Neurosci. Abstr., 5:626.

    Google Scholar 

  • Grüsser, O.-J., Grüsser-Cornehls, U., 1973, Neuronal mechanisms of visual movement perception and some psychophysical and behavioral correlations, in “Handbook of Sensory Physiology” Vol. VII/3A, R. Jung, ed., Springer, Berlin, Heidelberg, New York.

    Google Scholar 

  • Ingle, D., 1970, Visuomotor functions of the frog optic tectum. Brain Behav., Evol., 3:57–71.

    Article  CAS  Google Scholar 

  • Ingle, D., 1973, Two visual systems in the frog. Science, 181:1053–1055.

    Article  PubMed  CAS  Google Scholar 

  • Ingle, D., 1982, The analysis of visuomotor organization in some vertebrates, in “Advances in Analysis of Visual Behavior”, D. Ingle, M. Goodale, and R. Mansfield, eds., M.I.T. Press, Cambridge, Mass., (in press).

    Google Scholar 

  • Kostyk, S.K., and Grobstein, P., 1980, Visual prey acquisition behavior in the frog: Effects of various unilateral lesions. Soc. Neurosci. Abstr., 6:75.

    Google Scholar 

  • Kostyk, S.K., and Grobstein, P., 1982, Visual orienting deficits in frogs with various unilateral lesions. Behav. Brain Res., (submitted).

    Google Scholar 

  • Krasne, F.B., and Wine, J.J., 1977, Control of crayfish escape behavior, in “Identified Neurons and Behavior of Arthropods”, G. Hoyle, ed., Plenum Press, New York.

    Google Scholar 

  • Peck, C.K., Barber, G., Pilsecker, C.E., and Wark, R.C., 1980, Visual field deficits in cats reared with cyclodeviations of the eyes. Exp. Brain Res., 41:61–74.

    Article  PubMed  CAS  Google Scholar 

  • Raphan, T., and Cohen, B., 1978, Brainstem mechanisms for rapid and slow eye movements. Ann. Rev. Physiol., 40:527–552.

    Article  CAS  Google Scholar 

  • Scalia, F., and Fite, K., 1974, A retinotopic analysis of the central connections of the optic nerve in the frog. J. Comp. Neurol., 158:455–478.

    Article  PubMed  CAS  Google Scholar 

  • Sperry, R.W., 1944, Optic nerve regeneration with return of vision in anurans. J. Neurophysiol., 7:57–69.

    Google Scholar 

  • Sperry, R.W., 1948, Orderly patterning of synaptic associations in regeneration of intracerebral fiber tracts mediating visuomotor coordination. Anat. Rec., 102:63–75.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Grobstein, P., Comer, C., Kostyk, S.K. (1983). Frog Prey Capture Behavior: Between Sensory Maps and Directed Motor Output. In: Ewert, JP., Capranica, R.R., Ingle, D.J. (eds) Advances in Vertebrate Neuroethology. NATO Advanced Science Institutes Series, vol 56. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4412-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4412-4_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4414-8

  • Online ISBN: 978-1-4684-4412-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics