Mononuclear Phagocytes in the Control of Primary and Secondary Tumor Growth

  • R. Keller
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 155)


Interactions between tumor and host are subtle, manifold and complex (1,2). The outcome of this interaction is determined not only by the growth properties, adaptive potential and immunogenicity of the tumor cells but also by host tumor defense mechanisms (3). A particularly striking example is individuals who appear healthy after surgical removal of their primary tumor, but who later succumb to resident tumor cells that had been dormant for a long time.


Mononuclear Phagocyte Primary Tumor Growth Macrophage Depletion Tumor Cell Spread Progressive Tumor Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Castro, J. E., “Immunological Aspects of Cancer”, MTP Press, St. Leonard’s House, Lancaster, England, 1978.CrossRefGoogle Scholar
  2. 2.
    Woodruff, M. F. A., “The Interaction of Cancer and Host”, Grune and Stratton, New York, 1980.Google Scholar
  3. 3.
    Nauts, H. C., “The Beneficial Effects of Bacterial Infections on Host Resistance to Cancer and Results in 449 Cases”, Monograph No 8, Cancer Res. Institute, Inc., New York, 1980.Google Scholar
  4. 4.
    James, K., McBride, W. H., and Stuart, A., “The Macrophage and Cancer”, Econoprint, Edinburgh, 1977.Google Scholar
  5. 5.
    Keller, R., in “Natural Cell-Mediated Immunity Against Tumors” (R. B. Herberman, ed.), pp. 1219–1269, Academic Press, New York, 1980.Google Scholar
  6. 6.
    Förster, O., and Landy, M., “Heterogenicity of Mononuclear Phagocytes”, Academic Press, London, 1981.Google Scholar
  7. 7.
    Hibbs, H. B., Lambert, L. H., and Remington, J. S., Proc. Soc. Exp. Biol. Med. 139:1049, 1972.PubMedGoogle Scholar
  8. 8.
    Keller, R., in “Lymphokines 3” (E. Pick, ed.), pp. 283–292, Academic Press, New York, 1981.Google Scholar
  9. 9.
    Cabilly, S., and Gallily, R., Immunology 44:347, 1981.PubMedGoogle Scholar
  10. 10.
    Keller, R. (submitted).Google Scholar
  11. 11.
    Keller, R., in “Mononuclear Phagocytes. Functional Aspects” (R. van Furth, ed.), pp. 1725–1740, M. Nijhoff, The Hague, 1980.Google Scholar
  12. 12.
    Simpson-Herren, L., Sanford, A. H., and Holmquist, J. P., Cancer Treatm. Rep. 60:1749, 1976.Google Scholar
  13. 13.
    Sugarbaker, E. V., Thornthwaite, J., and Ketcham, A. S., in “Cancer Invasion and Metastasis: Biologic Mechanisms and Therapy” (S. B. Day et al., eds.), pp. 227–240, Raven Press, New York, 1977.Google Scholar
  14. 14.
    Gorelik, E., Segal, S., and Feldman, M., Int. J. Cancer 27:847, 1981.PubMedCrossRefGoogle Scholar
  15. 15.
    Alexander, P., Ann. Rev. Med. 27:207, 1976.PubMedCrossRefGoogle Scholar
  16. 16.
    Birbeck, M. S. C., and Carter, R. L., Int. J. Cancer 9:249, 1972.PubMedCrossRefGoogle Scholar
  17. 17.
    Eccles, S. A., in “Immunological Aspects of Cancer” (J. E. Castro, ed.), pp. 123–154, MTP Press, St. Leonard’s House, Lancaster, England, 1978.CrossRefGoogle Scholar
  18. 18.
    Evans, R., and Eidlen, D. M., J. Reticuloendothelial Soc. 30:425, 1981.Google Scholar
  19. 19.
    Keller, R., Invasion and Metastasis 1:136, 1981.Google Scholar
  20. 20.
    Keller, R., and Hess, M. (submitted).Google Scholar
  21. 21.
    Evans, R., Transplantation 14:468, 1972.PubMedCrossRefGoogle Scholar
  22. 22.
    Hopper, K. E., and Nelson, D. S., Cell. Immunol. 47:163, 1979.PubMedCrossRefGoogle Scholar
  23. 23.
    Russell, S., and McIntosh, A. T., Nature (Lond.) 268:69, 1977.CrossRefGoogle Scholar
  24. 24.
    Mantovani, A., Int. J. Cancer 22:741, 1978.PubMedCrossRefGoogle Scholar
  25. 25.
    Fisher, E. R., and Fisher, B., Acta Cytol. 9:146, 1965.PubMedGoogle Scholar
  26. 26.
    Jones, P. D. S., and Castro, J. E., Br. J. Cancer 35:519, 1977.PubMedCrossRefGoogle Scholar
  27. 27.
    Mantovani, A., Giavazzi, R., Polentarutti, N., Spreafico, F., and Garattini, S., Int. J. Cancer 25:617, 1980.PubMedCrossRefGoogle Scholar
  28. 28.
    Proctor, J., Rudenstam, C. M., and Alexander, P., Biomedicine 19:248, 1973.PubMedGoogle Scholar
  29. 29.
    Gatenby, P., and Basten, A., Cancer Immunol. Immunother. 8:103, 1980.CrossRefGoogle Scholar
  30. 30.
    Fidler, I. J., Cancer Res. 34:1074, 1974.PubMedGoogle Scholar
  31. 31.
    Liotta, L. A., Gattozzi, C., Kleinerman, J., and Saidel, G., Br. J. Cancer 35:639, 1977.CrossRefGoogle Scholar
  32. 32.
    Hanna, M. G., Zbar, B., and Rapp, H. J., J. Natl. Cancer Inst. 48:1441, 1972.PubMedGoogle Scholar
  33. 33.
    Dickson, J. A., Calderwood, S. K., Shah, S. A., and Simpson, A. C., in “Metastasis. Clinical and Experimental Aspects” Developments in Oncology 4 (K. Hellmann, P. Hilgard, and S. Eccles, eds.), pp. 260–265, M. Nijhoff, The Hague, 1980.Google Scholar
  34. 1.
    Duran-Reynals, F., Tissue permeability and the spreading factors in infection. A contribution to the host-parasite problem, Bact. Rev. 6:197, 1942.PubMedGoogle Scholar
  35. 2.
    Wang, B., McLoughlin, G. A., Richie, J. P., and Mannick, J. A., Correlation of the production of plasminogen activator with tumor metastasis in B16 mouse melanoma cell lines, Cancer Res. 40:288, 1980.PubMedGoogle Scholar
  36. 3.
    Liotta, L. A., Tryggvason, K., Garbisa, S., Hart, I., Foltz, C. M., and Shafie, S., Metastatic potential correlates with enzymatic degradation of basement membrane collagen, Nature 284:67, 1980.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • R. Keller
    • 1
  1. 1.Immunobiology Research Group Institute of Immunology and VirologyUniversity of ZurichZurichSwitzerland

Personalised recommendations