Skip to main content

Domain Stability During Capillary Flow of Well Dispersed Two Phase Polymer Blends. Polystyrene/Polymethylmethacrylate Blends

  • Chapter
Polymer Alloys III

Part of the book series: Polymer Science and Technology ((PST,volume 20))

Synopsis

Hypotheses for domain stability, i.e. the conditions where each domain of a dispersed phase remains as a coherent domain during capillary flow is tested with data for polystyrene -polymethylmethacrylate melts. It is found that stable domains exist vhen the ratio between the (Trouton) zero shear viscosity of the dis-crete phase to the continuous phase is larger than approximately one. Blends of two thermodynamically incompatible polymers, polystyrene (PS) and poly(methyl-methacrylate) (PMMA), were melt blended in a Brabender Plasticorder over the compositions: 100$ PS, 75$, 50$ 25# and 0% PS. Viscous and die swell behaviour of pure polymers and the blends at different temperature were obtained using an Instron capillary rheometer and the microstructure of the melt blends was studied by transmission electronmicroscopy.

The question of domain stability is “tested” by a) comparing the average volume of coherent discrete domains before and after extrusion through a capillary and b) by an indirect method where a model prediction for the viscosity for stable domain flow is compared with experimental data.

It has been found that viscosity-shear rate data of PS-PMMA blends at different temperatures constitute master curves at constant blend composition when plotted as (η/η0 ) versus (γη0 /pT). Furthermore all the master curves of the blends and homopolymers with different molecular weight distributions superposed into a single master curve when plotted as (η/ηo) versus (γoMcH/ pRT) where Mc is twice the molecular weight between entanglements and H is the heterogeniety (M w /M n).

From the observed melt rheology results and the agreement of experimental results with model predictions supported by direct evidence of electron photomicrographs, it is concluded that the morphology of incompatible polymer blends depends on the composition ratio and Newtonian (or Trouton) viscosity ratio of the components. When the blend has the component with low Newtonian viscosity as dispersed phase, the dispersed droplets seem to be unstable and to break up into smaller droplets in capillary flow. On the other hand if the blend has the higher Newtonian viscosity component as a dispersed phase the dispersed droplets appear to form a stable morphology with continuous threads or a fibrillar pattern or elongated droplets in capillary flow.

In order to explain the experimental observations a hypothesis is formulated for the stability of coherent domains in the socalled relaxation region near the inlet region in the capillary for viscoelastic domains in viscoelastic media at high shear rates.

According to this hypothesis a necessary criterion for domain stability for a domain near the capillary axis (critically condition) is that the ratio between the relaxation time λD of the domains to that of the continuous phase λK is larger or equal to 1.

The relaxation time is given by \( \lambda = {{a {\eta _0}{M_C}H\rho } \over {{C^2}RT}} \)where η is the zero shear viscosity, MC is twice the molecular weight between entanglements, H = M W /M n , p the polymer density, c is the polymer concentration, is the gas constant, T is the absolute temperature an a is a constant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Shen and H. Kawai, Aiche J., 24, 1(l978).

    Article  CAS  Google Scholar 

  2. H. Van Oene , J. Colloid. Interfac Sci., 40,448 (1972).

    Article  Google Scholar 

  3. J.M. Starita, Trans. Soc. Rheol., 16 , 339(1972).

    Article  CAS  Google Scholar 

  4. C.D.Han, Trans. Soc. Rheol., 19, 245(1975)

    Article  CAS  Google Scholar 

  5. G.N. Argeropoulos, F.C. Weissert, P.H. Biddison and G.G.A. Böhm, Rubber Chem. Technol., 49, 93(1976).

    Article  Google Scholar 

  6. A.P. Plochocki, Trans. Soc. Rheol., 20, 287(1976).

    Article  CAS  Google Scholar 

  7. C.J. Nelson, G.N. Argeropoulos, F.C. Weissert and G.G.A. Böhm, Angew. Makromol. Chem., 60/61, 49 (1977).

    Article  Google Scholar 

  8. S. Danesi and R.S. Porter, Polymer, 19, 448(1978).

    Article  CAS  Google Scholar 

  9. J. Lyngaae-J¢rgensen and N. Alle, Polym. Prep., 19, 103(1978).

    Google Scholar 

  10. J. Lyngaae-Jørgensen, N. Alle and F.L. Marien, Adv. Chem. Series, 176, 541(1979).

    Google Scholar 

  11. N. Alle and J. Lyngaae-Jørgensen, Rheol.Acta., 19, 9U(1980).

    Google Scholar 

  12. N. Alle and J. Lyngaae-Jørgensen, Rheol. Acta., 19, 104(1980).

    Article  CAS  Google Scholar 

  13. N. Alle and J. Lyngaae-J¢rgensen, Proc. VIII Int. Congr. Rheol., Naples, II, 521(1980).

    Google Scholar 

  14. C.D. Han and K. Funatsu, J. Rheol.’, 22, 113(1978).

    Article  CAS  Google Scholar 

  15. G.F. Taylor, Proc. Roy. Soc., A 138, 41, (1932).

    Article  CAS  Google Scholar 

  16. H.B. Chin and C.D. Han, J. Rheol., 23, 557, (1979) and J. Rheol., 24, 1, (1980).

    Google Scholar 

  17. M.V. Tsebrenko, N.M. Rezanova and G.V. Vinogradov, Polym. Eng. & Sci., 20, 1023(1980).

    Article  CAS  Google Scholar 

  18. N. Alle, Ph.D. (lic.techn) Thesis, The Technical University of Denmark, Lyngby, Denmark 1980.

    Google Scholar 

  19. G.V. Vinogradov and A.Y. Mallin, J.Polym.Sci., A-2, 2357(1964).

    Google Scholar 

  20. G.V. Vinogradov and N.V. Prozorovskaya, Rheol. Acta., 3, 156(1964).

    Article  CAS  Google Scholar 

  21. G.V. Vinogradov and A.Y. Malkin, J. Polym. Sci., A-2, 4, 135(1966).

    CAS  Google Scholar 

  22. R.C Penwell, W.W. Graessley and A. Kovacs, J. Polym. Sci., Polym. Phys. Ed. 12, 1771(1974).

    CAS  Google Scholar 

  23. F. Bueche, J. Chem. Phys., 22, 603(1954).

    Article  CAS  Google Scholar 

  24. W.W. Graessley, J. Chem. Phys. 43, 2696(1965).

    Article  CAS  Google Scholar 

  25. S. Middleman, “The Flow of High Polymers”, Inter-science, New York (1968).

    Google Scholar 

  26. J.F. Dunleavy and S. Middleman, Trans. Soc. Rheol. 10, 157(1966).

    Article  CAS  Google Scholar 

  27. D. Robinson, M.S. Thesis, University of Rochester, Rochester, New York (1967).

    Google Scholar 

  28. S. Middleman, J. Appl. Polym. Sci., 11, 412(1967).

    Article  Google Scholar 

  29. W.W. Graessley and L. Segal, Aiche J., 16 , 261(1970).

    Article  CAS  Google Scholar 

  30. J. Lyngaae-Jørgensen, Relations Between Structureand Rheological Properties of Concentrated Polymer Melts, Instituttet for Kemiindustri, The Technical University of Denmark, Lyngby, Denmark (1980).

    Google Scholar 

  31. C.D. Han, “Polymer Processing”, Academic Press, New York (1976).

    Google Scholar 

  32. L.E. Nielsen, “Polymer Rheology”, Marcel Dekker,New York (1977).

    Google Scholar 

  33. G.V. Vinogradov, M. Yokob , M.V. Tsebrenko and A.V. Yadim, Int. J. Polym. Metals 3, 99(1974).

    Article  Google Scholar 

  34. A.P. Plochocki, “Polymer Blends”, Vol. 2, p. 319, (D.R. Pauland S. Newman ed.) Academic Press, New York (1978).

    Google Scholar 

  35. B. Rabinowitsch, Z. Phys. Chem., AlU5, 1(1929).

    Google Scholar 

  36. I.M. Krieger and S.H. Maron, J. Appl. Phys., 23, 147(1952).

    Article  CAS  Google Scholar 

  37. E.B. Bagley, J. Appl. Phys, 28, 624(1957).

    Article  CAS  Google Scholar 

  38. E.B. Bagley, Trans. Soc. Rheol., 5, 355(1961).

    Article  CAS  Google Scholar 

  39. J.D. Ferry, J. Am. Chem. Soc., 6, 1330(1942).

    Article  Google Scholar 

  40. H. Van Oene, “Polymer Blends”, Vol. 1, p. 295, (D.R. Paul and S. Newman ed.) Academic Press, New York (1978).

    Google Scholar 

  41. C.D. Han And T.C. Yu, Aiche J., 17, 1512(1971).

    Article  CAS  Google Scholar 

  42. L.P. McMaster, Adv. Chem. Series, 142, 143, (1975)

    Google Scholar 

  43. R.G. Cox, J. Fluid. Mech., 37, 601, (1969).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Lyngaae-Jørgensen, J., Andersen, F.E., Alle, N. (1983). Domain Stability During Capillary Flow of Well Dispersed Two Phase Polymer Blends. Polystyrene/Polymethylmethacrylate Blends. In: Klempner, D., Frisch, K.C. (eds) Polymer Alloys III. Polymer Science and Technology, vol 20. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4358-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4358-5_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4360-8

  • Online ISBN: 978-1-4684-4358-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics