Helper T Cells Specific for Protein Antigens: Role of Self Major Histocompatibility Complex and Immunoglobulin Gene Products

  • Charles A. JanewayJr.
  • Kim Bottomly
  • Barry Jones
  • Patricia P. Jones
  • Ethan A. Lerner
  • Louis A. Matis
  • Janet M. McNicholas
  • Donal B. Murphy
  • Ronald H. Schwartz
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 150)


Antibody responses to most antigens are dependent on the cooperative interaction of two distinct populations of lymphocytes. B lymphocytes are the precursors to antibody forming cells; their ability to produce antibody is dependent on helper T lymphocytes (Th). In classical studies of helper T cell function, B cells specific for haptens have been stimulated with hapten-protein conjugates, and the role of protein carrier-primed helper T cells measured (1). In such studies, the hapten must be physically linked to the carrier protein (1,2), and the helper T cell specifically primed to the carrier used for secondary immunization (1,2). Using this system, Katz and coworkers (3) made the surprising discovery that Th and B lymphocytes needed to be identical in the I region of the major histocompatibility complex (MHC) in order to cooperate effectively. Subsequent studies by a number of investigators have demonstrated that Th cells are selected during their development for the ability to recognize particular MHC encoded antigens as self, and that such Th cells will not respond to antigen except in the context of the MHC encoded antigen for which they are specific (4). This phenomenon has been termed MHC restriction.


Major Histocompatibility Complex Spleen Cell Mixed Lymphocyte Reaction Immune Response Gene Nominal Antigen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. A. Mitchison. The carrier effect in the secondary response to hapten-protein conjugates. II. Cellular cooperation, Eur. J. Immunol. 1: 18 (1971).PubMedCrossRefGoogle Scholar
  2. 2.
    C. A. Janeway,Jr. Cellular cooperation during in vivo antibody responses. I. The effect of cell number, J. Immunol. 114: 1394 (1975).Google Scholar
  3. 3.
    D. H. Katz, M. Graves, M. E. Dorf, H. DiMuzio and B. Benacerraf. Cell interactions between histoincompatible T and B lymphocytes. VII. Cooperative responses between lymphocytes are controlled by genes in the I region of the H-2 complex, J. Exp. Med. 141: 263 (1975).PubMedCrossRefGoogle Scholar
  4. 4.
    M. J. Bevan and P. J. Fink. The influence of thymus H-2 antigens on the specificity of maturing killer and helper cells, Immunol. Rev. 42: 3 (1979).Google Scholar
  5. 5.
    D. H. Katz, T. Hamaoka, M.E. Dorf, P. H. Maurer and B. Benacerraf. Cell interactions between histoincompatible T and B lymphocytes. IV. Involvement of the immune response (Ir) gene in the control of lymphocyte interaction in responses controlled by the genes, J. Exp. Med. 138: 734 (1973).PubMedCrossRefGoogle Scholar
  6. 6.
    C. A. Janeway, Jr., D. L. Bert and F. W. Shen. Cell cooperation during in vivo anti-hapten antibody responses. V. Two synergistic Ly1+23- helper T cells with distinctive specificities, Eur. J. Immunol. 10: 231 (1980).PubMedCrossRefGoogle Scholar
  7. 7.
    C. A. Janeway, Jr., R. A. Murgita, F. I. Weinbaum, R. Asofsky and H. Wigzell. Evidence for an immunoglobulin-dependent antigen-specific helper T cell, Proc. Nat. Acad. Sci. (USA) 74: 4582 (1977).CrossRefGoogle Scholar
  8. 8.
    K. Bottomly and D. E. Mosier. Mice whose B cells can not produce the T15 idiotype also lack an antigen-specific helper T cell required for T15 expression, J. Exp. Med. 150: 1399 (1979).Google Scholar
  9. 9.
    K. Bottomly, C. A. Janeway, Jr., B. J. Mathieson and D. E. Mosier. Absence of an antigen-specific helper T cell required for the expression of the T15 idiotype in mice treated with anti-p antibody, Eur. J. Immunol. 10: 159 (1980).PubMedCrossRefGoogle Scholar
  10. 10.
    K. Bottomly and F. Jones III. Idiotypic dominance manifested during a T-dependent anti-phosphorylcholine response requires a distinct helper T cell, in: “B Lymphocytes in the Immune Response,” N. Klinman, D. Mosier, I. Scher and E. Vitetta, eds, Elsevier/North Holland, New York pg. 415 (1981).Google Scholar
  11. 11.
    K. Bottomly. Activation of the idiotypic network: environmental and regulatory influences, in: “Immunoglobulin Idiotypes,” C. A. Janeway, Jr., E. Sercarz, H. Wigzell and C. F. Fox, ed., Academic Press, New York. In press.Google Scholar
  12. 12.
    B. Sredni, H. Y. Tse, C. Chin and R. H. Schwartz. Antigen-specific clones of proliferating T lymphocytes. I. Methodology, specificity and MHC restriction, J. Immunol. 126: 341 (1981).PubMedGoogle Scholar
  13. 13.
    A. Singer, K. S. Hathcock and R. J. Hodes. Cellular and genetic control of antibody responses. V. Helper T-cell recognition of H-2 determinants on accessory cells but not B cells, J. Exp. Med. 149: 1208 (1979).PubMedGoogle Scholar
  14. 14.
    B. Jones and C. A. Janeway, Jr. Cooperative interaction of B lymphocytes with antigen-specific helper T lymphocytes is MHC restricted, Nature (Lond) 292: 547 (1981).CrossRefGoogle Scholar
  15. 15.
    J. Sprent. Effects of blocking helper T cell induction in vivo with anti-Ia antibodies. Possible role of I-A/E hybrid molecules as restriction elements, J. Exp. Med. 152: 996 (1980).PubMedCrossRefGoogle Scholar
  16. 16.
    K. Bottomly and C. A. Janeway, Jr. Selected populations of alloreactive T cells contain helper T cells but lack ThId, an antigen-specific helper T cell required for dominant production of the T15 idiotype, Eur. J. Immunol. 11: (1981).Google Scholar
  17. 17.
    K. Bottomly and D. E. Mosier. Analogous dual specificity of helper T cells cooperating in the generation of clonally restricted antibody responses, in: “Strategies of Immune Regulation”, E. Sercarz and A. Cunningham, ed., Academic Press, New York, pg. 487 (1980).Google Scholar
  18. 18.
    K. Bottomly and P. H. Maurer. Antigen-specific helper T cells required for dominant production of an idiotype (ThId) are not under immune response (Ir) gene control, J. Exp. Med. 152: 1571 (1980).CrossRefGoogle Scholar
  19. 19.
    K. Bottomly and D. E. Mosier. Antigen-specific helper T cells required for dominant idiotype expression are not H-2 restricted, J. Exp. Med. 154: 411 (1981).CrossRefGoogle Scholar
  20. 20.
    C. A. Janeway, Jr., N. Sakato and H. N. Eisen. Recognition of immunoglobulin idiotypes by thymus-derived lymphocytes, Proc. Nat. Acad. Sci. (USA) 74: 2357 (1975).Google Scholar
  21. 21.
    N. Sakato, C. A. Janeway, Jr. and H. N. Eisen. Immune response of BALB/c mice to the idiotype of T15 and other myeloma proteins of BALB/c origin. Implications for an immune network and antibody multispecificity, Cold Spring Harbor Symp. Quant. Biol. 41: 719 (1976).CrossRefGoogle Scholar
  22. 22.
    K. Eichmann, I. Falk and K. Rajewsky. Recognition of idiotypes in lymphocyte interactions. H. Antigen-independent cooperation between T and B lymphocytes that possess similar and complimentary idiotypes, Eur. J. Immunol. 8: 853 (1978).Google Scholar
  23. 23.
    T. Jorgensen, B. Bogen and K. Hannestad. Recognition of variable (V) domains of myeloma protein 315 by B- and T-lymphocytes, in: “Immunoglobulin Idiotypes”, C. Janeway, E. Sercarz, H. Wigzell and C. F. Fox, eds., Academic Press, New York. In press.Google Scholar
  24. 24.
    R. G. Lynch, G. L. Milburn, R. G. Hoover, J. W. Rohrer and B. Dieckgraefe. Myeloma proteins are targets and inducers of immunoregulatory signals, in “Immunoglobulin Idiotypes”, C. Janeway, E. Sercarz, H. Wigzell and C. F. Fox, eds., Academic Press, New York. In press.Google Scholar
  25. 25.
    G. Kelsoe, D. Isaak and J. Cerny. Thymic requirement for cyclical idiotypic and reciprocal anti-idiotypic immune responses to a T-independent antigen, J. Exp. Med. 151: 289, (1980).PubMedCrossRefGoogle Scholar
  26. 26.
    J. Cerny and M. J. Caulfield. Stimulation of specific antibody-forming cells in antigen-primed nude mice by the adoptive transfer of syngeneic anti-idiotypic T cells, J. Immunol. 126: 2262 (1981).PubMedGoogle Scholar
  27. 27.
    C. A. Janeway, Jr., B. Broughton, E. Dzierzak, B. Jones, D. D. Eardley, S. Durum, K. Yamauchi, D. R. Green and R. K. Gershon. Studies of T lymphocyte function in B cell deprived mice, in: “Immunoglobulin idiotypes and their expression,” C. Janeway, E. Sercarz, H. Wigzell and C. F. Fox, eds., Academic Press, New York. In press.Google Scholar
  28. 28.
    E. A. Lerner, L. A. Matis, C. A. Janeway, Jr., P. P. Jones, R. H. Schwartz and D. B. Murphy, Monoclonal antibody against an Ir gene product, J. Exp. Med. 152: 1085 (1980).PubMedCrossRefGoogle Scholar
  29. 29.
    L. A. Matis, D. Lebwohl, M. Ultee, E. Margoliash and R. H. Schwartz. Gene complementation in the T lymphocyte response to pigeon cytochrome C, Fed. Proc. 39: 1127 (1980).Google Scholar
  30. 30.
    B. Sredni, L. A. Matis, E. A. Lerner, W. E. Paul and R. H. Schwartz. Antigen-specific T cell clones restricted to unique F1 major histocompatibility complex determinants. Inhibition of proliferation with a monoclonal anti-Ia antibody, J. Exp. Med., 153: 677 (1981).Google Scholar
  31. 31.
    C. A. Janeway, Jr., E. A. Lerner, P. J. Conrad and B. Jones, The precision of self and non-self major histocompatibility complex encoded antigen recognition by cloned T cells, Behring Institute Mitteilungen. In press.Google Scholar
  32. 32.
    M. Michaelides, M. Sandrin, G. Morgan, IFC McKenzie, R. Ashman and R. W. Mutant Ir 153:464n subregion (1981)Google Scholar
  33. 33.
    L. J. Rosenwasser and B. T. Huber. The xid gene controls Ia.W39-associated immune response gene function, J. Exp. Med. 153: 1113 (1981).PubMedCrossRefGoogle Scholar
  34. 34.
    L. A. Matis, P. P. Jones, D. B. Murphy, S. M. Hedrick, E. A. Lerner, C.A. Janeway, Jr., J. M. McNicholas and R. H. Schwartz. Immune response gene function correlates with the cell surface expression of an la antigen. H. A quantitative deficiency in AeEΠcomplex expression causes a corresponding defect in antigen presenting cell function, J. Exp. Med., submittedGoogle Scholar
  35. 35.
    J. M. McNicholas, D. B. Murphy, L. A. Matis, R. H. Schwartz, E. A. Lerner, C. A. Janeway, Jr. and P. P. Jones. Immune response gene function correlates with the expression of an Ia antigen. I. Preferential association of certain Ae and Ea chains results in a quantitative deficiency in expression of an AeEa complex, J. Exp. Med., submitted.Google Scholar
  36. 36.
    C. N. Baxevanis, Z. A. Nagy and J. Klein. A novel type of T-T cell interaction removes the requirement for I-B region in the H-2 complex, Proc. Nat. Acad. Sci. (USA) 78: 3809 (1981).CrossRefGoogle Scholar
  37. 37.
    J. Sprent, E. A. Lerner, J. Bruce and F. W. Symington. Inhibition of T cell activation in vivo with mixtures of monoclonal antibodies specific for I-A and I-A/E molecules, J. Exp. Med. 154: 188 (1981).PubMedCrossRefGoogle Scholar
  38. 38.
    C. A. Janeway, Jr., H. Wigzell and H. Binz. Hypothesis: Two different VH gene products make up the T cell receptors, Scand. J. Immunol. 5: 993 (1976).Google Scholar
  39. 39.
    B. Benacerraf. An hypothesis to relate the specificity of T lymphocytes and the activity of I region-specific Ir genes in macrophages and B lymphocytes, J. Immunol. 120: 1809 (1978).PubMedGoogle Scholar
  40. 40.
    A. S. Rosenthal. Determinant selection and macrophage function in genetic control of the immune response. Immunol. Rev. 40: 136 (1978).PubMedCrossRefGoogle Scholar
  41. 41.
    R. H. Schwartz, C. F. Merryman and P. H. Maurer. Gene complementation in the T lymphocyte proliferative response to poly (glu57lys38tyr5): evidence for effects of polymer handling and gene dosage, J. Immunol. 123: 272 (1979).PubMedGoogle Scholar
  42. 42.
    R. W. Chestnut and H. M. Grey. Studies on the capacity of B cells to serve as antigen presenting cells, J. Immunol. 126: 1075 (1981).Google Scholar
  43. 43.
    D. D. Eardley, F. W. Shen, H. Cantor and R. K. Gershon. Genetic control of immunoregulatory circuits. Genes linked to the Ig locus govern communication between regulatory T cell sets, J. Exp. Med. 150: 44 (1979).CrossRefGoogle Scholar
  44. 44.
    M. Seman and J. Morisset. Analysis of T clones provide evidence for two distinct populations of helper T cells (Thl and Th2) one of them participating to the isotypic regulation of the antibody response, J. Supramolec. Struct. and Cell Biochem. Suppl. 5: 86 (1981).Google Scholar
  45. 45.
    R. K. Gershon, D. D. Eardley, S. Durum, D. R. Green, F.-W. Shen, K. Yamauchi, H. Cantor and D. B. Murphy. Contra-suppression. A novel immunoregulatory activity, J. Exp. Med. 153: 1533 (1981).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Charles A. JanewayJr.
    • 2
    • 3
    • 4
  • Kim Bottomly
    • 1
  • Barry Jones
    • 1
  • Patricia P. Jones
    • 2
    • 3
    • 4
  • Ethan A. Lerner
    • 2
    • 3
    • 4
  • Louis A. Matis
    • 2
    • 3
    • 4
  • Janet M. McNicholas
    • 2
    • 3
    • 4
  • Donal B. Murphy
    • 2
    • 3
    • 4
  • Ronald H. Schwartz
    • 2
    • 3
    • 4
  1. 1.Howard Hughes Medical InstituteUSA
  2. 2.Department of PathologyYale University School of MedicineNew HavenUSA
  3. 3.Department of Biological SciencesStanford UniversityStanfordUSA
  4. 4.Laboratory of ImmunologyNIAID, NIHBethesdaUSA

Personalised recommendations