Skip to main content

Part of the book series: NATO Advanced Study Institutes Series ((NSSB,volume 84))

  • 221 Accesses

Abstract

Conventional isothermal heat treatment techniques have served for semiconductor fabrication very well up until now. Most of the physical processes involved in fabrication are rate-determined by a solid state diffusion process (e.g. oxidation, dopant redistribution, anneal of implantation damage) and such processes have activation energies typically in the range 2–5 eV. The resulting sensitivity to temperature has required temperature control to ±1°C on modern semiconductor furnaces, and this is routinely met. What, then, is the place of radiant beam processing? This technique opens up the possibility of non-isothermal heat treatment, in which we have control over the spatial and temporal extent of the temperature profile inside the silicon over a very wide range of times (100 picosecs to 100 sees) and distances (0.1 micron to 1000 microns). This selectivity and control of beam annealing makes completely new types of processing possible, and the purpose of this paper is to examine these new possibilities in the light of their usefulness for device fabrication and particularly for silicon integrated circuit processing. New developments are occurring monthly, however, and this overview can only hope to be an accurate snapshot of a rapidly moving field of work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Gat, J.F. Gibbons, T.J. Magee, J. Peng, V.R. Deline, P. Williams and C.A. Evans Jr., Appl. Phys. Letts. 3_2 (1978) 276–278

    Article  Google Scholar 

  2. . A. Gat, J.F. Gibbons, T.J. Magee, J. Peng, V.R. Deline, P. Williams and C.A. Evans Jr.,Appl. Phys. Letts. 33 (1978) 389–391.

    Article  Google Scholar 

  3. J.L. Regolini, J.F. Gibbons, T.W. Sigmon, R.F.W. Pease, T.J. Magee and J. Peng, Appl. Phys. Letts. 34 (1979) 410–413.

    Article  Google Scholar 

  4. K.N. Ratnakumar, R.F.W. Pease, D.J. Bartelink, N.M. Johnson and J.D. Meindl, Appl. Phys. Letts. 35 (1979) 463–466.

    Article  Google Scholar 

  5. H. Boroffka, E.F. Krimmel, M. Linder and H. Runge, Proceedings of the Symposium on Laser and Electron Beam Processing of Electronic Materials, Electrochem. Soc. Proc., Vol 80–1 (1980) 178–186.

    Google Scholar 

  6. G. Zimmer, Electronics Letts. (1979) 15 No.6, 184–186.

    Article  Google Scholar 

  7. R.A. McMahon and H. Ahmed in Ref.4, p.123-140.

    Google Scholar 

  8. J.F. Gibbons in Ref.4, p.1-25.

    Google Scholar 

  9. By kind permission of R.A. McMahon and H. Ahmed.

    Google Scholar 

  10. T. Shibata, T.W. Sigmon and J.F. Gibbons in Ref.4, p.520-530.

    Google Scholar 

  11. T.W. Sigmon, J.L. Regolini, J.F. Gibbons in Ref .4, p.531-536.

    Google Scholar 

  12. C.W. White, W.H. Christie, R.E. Eby, J.C. Wang, R.T. Young, G.J. Clark and R.F. Wood, to be published.

    Google Scholar 

  13. See Ref.36.

    Google Scholar 

  14. A.G. Cullis, H.C. Webber, J.M. Poate and N.G. Chew, J.Microsc. 118 (1980).

    Google Scholar 

  15. M. Wittmer and M. von Allmen, J. Appl. Phys. 50 4786 (1979).

    Article  Google Scholar 

  16. J.M. Poate, H.J. Leamy, T.T. Sheng and G.K. Celler, Appl. Phys. Letts. 33 918 (1978) .

    Article  Google Scholar 

  17. Proceedings of the Laser Solids Interactions and Laser Processing Symposium Ed. S.D. Ferris, H.J. Leamy, J.M. Poate, A.I.P. Conf. Proceedings No.50 (1979).

    Google Scholar 

  18. C.W. White, S.R. Wilson, B.R. Appleton, F.W. Young Jr., J.Appl. Phys. 51 (1980), 738–749.

    Article  Google Scholar 

  19. J. Narayan, R.T. Young, C.W. White, J. Appl. Phys. 49_ (1978), 3912–3917.

    Article  Google Scholar 

  20. M. Linder, Phys .Stat.Sol. (a) 5l (1980) 263.

    Article  Google Scholar 

  21. M. Koyanagi, H. Tamura, M. Miyao, N. Hashimoto and T. Tokuyama, Appl. Phys. Letts. 35 (1979) 621–623.

    Article  Google Scholar 

  22. J. Narayan, R.T. Young, R.F. Wood, W.H. Christie, Appl. Phys. Letts. 33 (1978) 338–340.

    Article  Google Scholar 

  23. K.L. Wang, Y.S. Liu and C. Burman, Appl. Phys. Letts. 35 (1979) 263–265.

    Article  Google Scholar 

  24. R. Stuck, E. Fogarassy, A. Grob, J.J. Grob, J.C. Muller and P. Siffert in Ref.4, pp.193-203.

    Google Scholar 

  25. C. Hill in Ref.4, p.26-43.

    Google Scholar 

  26. J.C. Bean, H.J. Leamy, J.M. Poate, G.A. Rozgonyi, J.P. van der Ziel, J.S. Williams and G.K. Celler, J. Appl. Phys. 50 (1979) 881.

    Article  Google Scholar 

  27. P. Revesz, G. Farkas, G. Mezey and J. Gyulai, Appl. Phys. Letts. 33 (1978) 431–433.

    Article  Google Scholar 

  28. D. Hoonhout, C.B. Kerkdigk, F.W. Saris, Phys. Lett. A66 (1978) 145.

    Google Scholar 

  29. G.A. Sai-Halasz, F.F. Fang, T.O. Sedgwick Armin Segmuller,Appl. Phys Letts., 36 (1980) 419–422.

    Article  Google Scholar 

  30. M.E. Roulet, P. Schwob, K. Affolter, W. Lüthy, M. von Allmen, M. Fallavier, J.M. Mackowski, M.A. Nicolet and J.P, Thomas, J. Appl. Phys. 50 (1979) 5536–5538.

    Article  Google Scholar 

  31. P. Shah, R. Shah, L. Crosthwait in Ref.4, 227–234.

    Google Scholar 

  32. K.F. Lee, J.F. Gibbons, K. Saraswat, T.I. Kamins, Appl. Phys. Letts. 35 (1979) 173–175.

    Article  Google Scholar 

  33. J.F. Gibbons, K.F. Lee, T.J. Magee, J. Peng and R. Ormond, Appl. Phys. Letts. 34. (1979) 831.

    Article  Google Scholar 

  34. M.W. Geis, D.C. Flanders, H.I. Smith, Appl. Phys. Letts. 35 (1979) 71.

    Article  Google Scholar 

  35. G. Yaron and La Verne D. Hess, Appl. Phys. Letts. 36. (1980) 220–222.

    Article  Google Scholar 

  36. F.E. Harper and M.I. Cohen, Sol. State Elec. JL3 (1980) 1103.

    Google Scholar 

  37. C.W. White, J. Narajan and R.T. Young, Science 204 (1979) 461–468.

    Article  Google Scholar 

  38. G. Yaron, L.D. Hess and S.A. Kokorowski, IEDM (1979) Abs.9.4.

    Google Scholar 

  39. C.P. Wu and G.L. Schnable, RCA Review 40 (1979) 339–344.

    Google Scholar 

  40. H. Runge, private communication.

    Google Scholar 

  41. Y. Hayafuji, T. Yanada and Y. Aoki, Elec. Chem. Soc. Meeting (Fall 1979), Abs.485 Abstracts Vol.79–2.

    Google Scholar 

  42. R.A. Kaplan, M.G. Cohen, K.C. Liu, Ref.4, 58–82.

    Google Scholar 

  43. A.G. Cullis, H.C. Webber and P. Bailey, J. Phys. E. 12: (1979) 688–689.

    Article  Google Scholar 

  44. A. Lietoila, J.F. Gibbons, T.J. Magee, J. Peng and J.D. Hong, Appl. Phys. Letts. 35 (1979) 532–534.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Hill, C. (1983). Laser Annealing of Semiconductor Devices. In: Bertolotti, M. (eds) Physical Processes in Laser-Materials Interactions. NATO Advanced Study Institutes Series, vol 84. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4322-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4322-6_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4324-0

  • Online ISBN: 978-1-4684-4322-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics