Skip to main content

Amino Acid Sequence Evidence on the Phylogeny of Primates and Other Eutherians

  • Chapter
Book cover Macromolecular Sequences in Systematic and Evolutionary Biology

Abstract

The biomolecular approach to systematic and evolutionary biology is in a state of transition. Laboratories that had been determining the amino acid sequences of proteins are now caught up by the excitement of the new recombinant DNA gene cloning and sequencing technology. The possibilities for advancing knowledge in systematic and evolutionary biology by application of this new technology seem almost boundless. It is obvious that knowing the actual nucleotide sequences of genes, rather than having to infer them from the amino acid sequences of encoded proteins, allows more accurate data to be used in figuring out the genealogic relationships of organisms (see Hewett-Emmett et al., this volume, Chapter 9; also Scott and Smith, this volume, Chapter 8). During the transition, while laboratories engaged in studying molecular evolution are retooling in order to engage in nucleotide sequencing, it is worth preparing for the impending flood of these gene sequence data by taking stock of what has already been learned about phylogeny from the substantial body of amino acid sequence data. With that objective in mind, this chapter focuses attention on the phylogeny of the order Primates, both on the subbranching within the order and on the genealogic position of Primates within the subclass Eutheria as well as on the broader pattern of vertebrate branching. We will concentrate on these groups because more species are represented in them by amino acid sequence data than in any other eukaryotic branch.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnone. A., and Perutz. M. F.. 1974, Structure of inositol hexaphosphate—human deoxyhaemoglobin complex, Nature 249: 34–36.

    Article  PubMed  CAS  Google Scholar 

  • Baba. M. L.. Darga, L. L., Goodman, M., and Czelusniak, J., 1981, Evolution of cytochrome c investigated by the maximum parsimony method, J. Mol. Erol. 17: 197–213.

    Google Scholar 

  • Barnabas, J., Goodman, M., and Moore, G. W., 1972. Descent of mammalian alpha globin chain sequences investigated by the maximum parsimony method, J. Mol. Biol. 69:249–278.

    Google Scholar 

  • Benveniste, R. E.. and Todaro, G. J., 1976, Evolution of type C viral genes: Evidence for an Asian origin of man. Nature 261: 101–108.

    Article  PubMed  CAS  Google Scholar 

  • Blake, C. C. F., 1979, Exons and the structure, function and evolution of haemoglobin. Nature 291: 616.

    Article  Google Scholar 

  • Boyer, S. H., Noyes, A. N., Timmons. C. F.. and Young, R. A.. 1972, Primate hemoglobins: Polymorphisms and evolutionary patterns, J. Hum. Erol. 1: 515–543.

    Google Scholar 

  • Braunitzer. G., and Fujuki. H., 1969, Zur evolution der vertebraten die konstitution und tertiärstruktur des hämoglobins des flussneunauges, Naturii’issenschaften 56: 322–323.

    Article  CAS  Google Scholar 

  • Ciochon, R. L., and Chiarelli, A. B. (eds.), 1981, Evolutionary Biology of the New World Monkeys and Continental Drift. Plenum Press, New York.

    Google Scholar 

  • Czelusniak, J., Goodman, M., and Moore. G. W., 1978. On investigating the statistical properties of the populous path algorithm by computer simulation. J. Mol. Erol. 11: 75–85.

    CAS  Google Scholar 

  • Czelusniak, J., Goodman, M., Hewett-Emmett. D.. Weiss, M. L., Venta, P. J., and Tashian. R. E.. 1982. Phylogenetic origins and adaptive evolution of avian and mammalian haemoglobin genes, Nature,in press.

    Google Scholar 

  • Dayhoff. M. O.. 1978, Atlas of Protein Sequence and Structure, Volume 5. National Biomedical Research Foundation. Washington, D.C.

    Google Scholar 

  • De Jong, W. W., and Goodman, M., 1981, Mammalian phylogeny studied by sequence analysis of eye lens protein u-crystallin, Z. Sauugetierkd.,in press.

    Google Scholar 

  • Dene. H., Goodman, M., Walz. D.. and Romero-Herrera. A. E.. 1982. The phylogenetic position of aardvark (Orvcteropus afer) as suggested by its myoglobin, in preparation.

    Google Scholar 

  • Dickerson, R. E.. and Geis. I.. 1981, Hemoglobin: Structure, Function. Evolution, and Pathology. Benjamin Cummings. Menlo Park.

    Google Scholar 

  • Dutrillaux. B., 1975, Sur lar nature el l’origine des chromosomes humains, Monogr. Ann. Génét. Expansion Sci. Fr. 1975: 41–71.

    Google Scholar 

  • Dwulet, J. A.. Dwulet, F. E., and Gurd, F. R. N.. 1980. Complete amino acid sequence of the major component myoglobin from Hubb’s beaked whale. Mesoplodon car/huhbsi, Biochim. Biophys. Acta 624: 121–129.

    Google Scholar 

  • Farris, J. S.. 1972, Estimating phylogenetic trees from distance matrices. Am. Nat. 106: 645–668.

    Article  Google Scholar 

  • Fermi, G., 1975, Three-dimensional fourier synthesis of human deoxyhaemoglobin at 2.5 A resolution refinement of the atomic model, J. Mol. Biol. 97: 237–256.

    Article  PubMed  CAS  Google Scholar 

  • Fitch, W. M., 1970, Distinguishing homologous and analogous proteins, Svst. Zool. 19: 99–113.

    Article  CAS  Google Scholar 

  • Fitch. W. M., and Langley, C. H., 1976, Evolutionary rates in proteins: Neutral mutations and the molecular clock, Molecular Anthropology (M. Goodman and R. E. Tashian, eds.), pp. 197–219, Plenum Press, New York.

    Google Scholar 

  • Fitch, W. M., and Margoliash, E., 1967, The construction of phylogenetic trees—A generally applicable method utilizing estimates of the mutation distance obtained from cytochrome c sequences, Science 155: 279–284.

    Article  PubMed  CAS  Google Scholar 

  • Frier, J. A., and Perutz, M. F., 1977, Structure of human foetal deoxyhaemoglobin, J. Mol. Biol. 112: 97–112.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, W., 1978, Why genes in pieces?, Nature 271: 501.

    Article  PubMed  CAS  Google Scholar 

  • Goodman, M., 1963, Man’s place in the phylogeny of the primates as reflected in serum proteins, in: Classification and Human Evolution (S. L. Washburn, ed.), Aldine, Chicago, pp. 204–234.

    Google Scholar 

  • Goodman, M., 1976, Towards a genealogical description of the Primates, in: Molecular Anthropology ( M. Goodman and R. E. Tashian. eds.). Plenum Press. New York, pp. 321–353.

    Google Scholar 

  • Goodman, M., 1980, Molecular evolution of the calmodulin family, in: Calcium-Binding Proteins: Structure and Function ( F. L. Siegel, E. Carafoli, R. H. Kretsinger, D. H. MacLennan, and R. H. Wasserman, eds.), Elsevier/North-Holland. New York, pp. 347–354.

    Google Scholar 

  • Goodman, M., 1981a, Decoding the pattern of protein evolution, Progr. Biophys. Mol. Biol. 37: 105–164.

    Article  Google Scholar 

  • Goodman, M., 1981b, Globin evolution was apparently very rapid in early vertebrates: A reasonable case against the rate-constancy hypothesis, J. Mol. Evol. 17: 114–120.

    Article  PubMed  Google Scholar 

  • Goodman, M., and Beeber, J. E., 1982, Molecular evolution above the species level: CIadogenesis and anagenesis revisited. Proceedings of C.N.R.S. International Colloquium on “Les Modalites, Rythmes Et Mecanismes De L’Evolution: Gradualisme Phyletique On Equilibres Ponctues?” Dijon, France, May 9–14, 1982.

    Google Scholar 

  • Goodman, M., and Moore, G. W., 1971, Immunodiffusion systematics of the Primates. I. The Catarrhini, Syst. Zool. 20: 19–62.

    Article  CAS  Google Scholar 

  • Goodman, M., Moore, G. W., Barnabas, J., and Matsuda. G., 1974. The phylogeny of human globin genes investigated by the maximum parsimony method, J. Mol. Evol. 3: 1–48.

    Article  PubMed  CAS  Google Scholar 

  • Goodman, M., Moore, G. W., and Matsuda, G., 1975, Darwinian evolution in the genealogy of haemoglobin, Nature 253: 603–608.

    Article  PubMed  CAS  Google Scholar 

  • Goodman, M., Czelusniak, J., Moore, G. W., Romero-Herrera, A. E., and Matsuda, G.. 1979a, Fitting the gene lineage into its species lineage, A parsimony strategy illustrated by cladograms constructed from globin sequences, Svst. Zool. 28: 132–163.

    Article  CAS  Google Scholar 

  • Goodman, M., Pechere, J.-F., Haiech, J., and Demaille, J. G., 19796, Evolutionary diversification of structure and function in the family of intracellular calcium-binding proteins, J. Mol. Evol. 13:331–352.

    Google Scholar 

  • Goodman, M., Weiss, M. L., and Czelusniak, J., 1982. Molecular evolution above the species level: branching pattern. rates, and mechanisms, Svst. Zool.,in press.

    Google Scholar 

  • Hall, G. E., and Schraer, R., 1979, Purification and partial characterization of high and low activity carbonic anhydrase isoenzymes from Malaclemvs terrapin contrata. Comp. Biochem. Phvsiol. 63B: 561–567.

    CAS  Google Scholar 

  • Hewett-Emmett, D., Cook, C. N., and Barnicot, N. A., 1976, Old World monkey hemoglobins: Deciphering phylogeny from complex patterns of molecular evolution, in: Molecular Anthropology ( M. Goodman and R. E. Tashian, eds.), pp. 257–275, Plenum Press, New York.

    Google Scholar 

  • Hewett-Emmett, D., Czelusniak, J., Goodman. M., Venta, P. J., and Tashian, R. E., 1981, Evolution of nucleotide sequences coding for hemoglobin chains, Fed. Proc. 40: 1591.

    Google Scholar 

  • Hill, W. C. O., 1953, Primates—Comparative Anatomy and Taxonomy, Volume I: Strepsirhini, University Press, Edinburgh.

    Google Scholar 

  • Hill, W. C. O., 1955, Primates—Comparative Anatomy and Taxonomy, Volume II: Haplorhini: Tarsioidea, University Press, Edinburgh.

    Google Scholar 

  • Huxley, J. S., 1942, Evolution, the Modern Synthesis, Allen and Unwin, London. Jamieson, G. A., Hayes, A., Blum, J. J., and Vanaman, T. C., 1980, Structure and function relationships among calmodulins from divergent eukaryotic organisms, in: CalciumBinding Proteins: Structure and Function (F. L. Siegel, E. Carafoli, R. H. Kretsinger, D. H. MacLennan, and R. H. Wasserman, eds.), Elsevier/North-Holland, New York, pp. 165–172.

    Google Scholar 

  • Johanson, D. C., and White, T. D., 1979, A systematic assessment of early African hominids, Science 203: 321–330.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, M., 1968, Evolutionary rate at the molecular level, Nature 217: 624–626.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, M., 1969, The rate of molecular evolution considered from the standpoint of population genetics, Proc. Natl. Acad. Sci. USA 63: 1181–1188.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, M., 1979, The neutral theory of molecular evolution, Sci. Am. 241 (5): 94–104.

    Article  Google Scholar 

  • Kimura, M., 1981, Was globin evolution very rapid in the early stages? A dubious case against the rate constancy hypothesis, J. Mol. Evol. 17: 110–113.

    Article  PubMed  Google Scholar 

  • Klee, C. B., Crouch, T. H., and Richman, P. G., 1980, Calmodulin, Annu. Rev. Biochem. 49: 489–515.

    Article  PubMed  CAS  Google Scholar 

  • Kretsinger, R. H., 1977, Evolution of the informational role of calcium in eukaryotes, in: Calcium-Binding Proteins and Calcium Function ( R. H. Wasserman, R. A. Corradino, E. Carafoli, R. H. Kretsinger, D. H. MacLennan, and F. L. Siegel, eds.), North-Holland, New York, pp. 63–72.

    Google Scholar 

  • Kretsinger, R. H., 1980, Structure and evolution of calcium-modulated proteins, CRC Crit. Rev. Biochem. 1980: 119–174.

    Article  Google Scholar 

  • Ladner, R. L., Heidner, E. J., and Perutz, M. F., 1977, The structure of horse methaemoglobin at 2.0 A resolution, J. Mol. Biol. 114: 385–414.

    Article  PubMed  CAS  Google Scholar 

  • Leclercq, F., Schnek, A. G., Braunitzer, G., Stangl, A., and Schrank, B., 1981, Direct reciprocal allosteric interaction of oxygen and hydrogen carbonate sequence of the haemoglobins of the caiman (Caiman crocodylus), the Nile crocodile (Crocodylus niloticus) and the Mississippi crocodile (Alligator mississippiensis), Hoppe-Seyler’s Z. Physiol. Chem. 362: 1151–1158.

    Article  PubMed  CAS  Google Scholar 

  • Le Gros Clark, W. E., 1959, The Antecedents of Man, Edinburgh University Press, Edinburgh.

    Google Scholar 

  • Lehman, L. D., Jones, B. N., Dwulet, F. E., Bogardt, R. A., and Gurd, F. R. N., 1980, Complete amino acid sequence of the major component myoglobin from the goose-beaked whale, Ziphius cavirostris, Biochim. Biophys. Acta 625: 221–229.

    PubMed  CAS  Google Scholar 

  • Li, S. L., and Riggs, A., 1970, The amino acid sequence of hemoglobin V from the lamprey Petromyzon marinus, J. Biol. Chem. 245: 6149–6169.

    PubMed  CAS  Google Scholar 

  • Liljeqvist, G., Braunitzer, G., and Paléus, S., 1979, Hämoglobine, XXVII Die sequenz der monomeren hämoglobine III von Myxine glutinosa L: ein neurer hämkomplex: E7 glutamin, Ell isoleucin, Hoppe-Seyler’s Z. Physiol. Chem. 360: 125–135.

    Article  PubMed  CAS  Google Scholar 

  • Lovejoy, L. O., 1981, The origin of man. Science 211: 341–350.

    Article  PubMed  CAS  Google Scholar 

  • L¢vtrup, S., 1977, The Phvlogenv of Ver•tebraia, Wiley, New York.

    Google Scholar 

  • Margoliash, E., 1980, Evolutionary adaptation of mitochondria) cytochrome c to its functional milieu, in: The Evolution of Protein Structure and Function ( D. S. Sigman and M. Brazier, eds.), Academic Press, New York, pp. 299–321.

    Google Scholar 

  • Martin, S. L., Zimmer, E. A.. Kan, Y. W., and Wilson. A. C., 1980, Silent -globin gene in old world monkeys, Proc. Natl. Acad. Sci. USA 77: 3563–3566.

    Google Scholar 

  • McHenry, H. M., and Corruccini, R. S., 1980. Late tertiary hominoids and human origins. Nature 285: 397–398.

    Article  Google Scholar 

  • McKenna, M. C.. 1969, The origin and early differentiation of therian mammals. Ann. N.Y. Acad. Sci. 167 (1): 217–240.

    Article  Google Scholar 

  • Moore, G. W., 1976, Proof for the maximum parsimony (“red king”) algorithm, in: MoIecular Anthropologv ( M. Goodman and R. E. Tashian, eds.), Plenum Press, New York. pp. 117–137.

    Google Scholar 

  • Moore, G. W., 1977, Proof of the populous path algorithm for missing mutations in parsimony trees, J. Theor. Biol. 66: 95–106.

    Article  PubMed  CAS  Google Scholar 

  • Moore, G. W., Barnabas, J., and Goodman, M., 1973, A method for constructing maximum parsimony ancestral amino acid sequences on a given network, J. Theor. Biol. 38:459–485.

    Google Scholar 

  • Moore, G. W., Goodman, M., Callahan, C., Holmquist, R., and Moise, H., 1976, Stochastic versus augmented maximum parsimony method for estimating superimposed mutations in the divergent evolution of protein sequences. Methods tested on cytochrome c amino acid sequences, J. Mol. Biol. 105: 15–37.

    Article  PubMed  CAS  Google Scholar 

  • Perutz, M. F., Bauer, C.. Gros, G.. Leclercq, F., Vandecasserie, C., Schnek, A. G., Braunitzer, G., Friday, A. E., and Joysey, K. A.. 1981, Allosteric regulation of erocodillian haemoglobin, Nature 291: 682–684.

    Google Scholar 

  • Pilbeam, D., 1979, Recent finds and interpretations of Miocene hominoids. Anna. Rev. Anthropol. 8: 333–352.

    Article  Google Scholar 

  • Rensch, B., 1959, Evolution above the Species Level, Columbia University Press. New York.

    Google Scholar 

  • Romer, A. S., 1966, Vertebrate Paleontology. University of Chicago Press, Chicago. Romero-Herrera, A. E., Lehmann. H.. Joysey, K. A., and Friday. A. E., 1973, Molecular evolution of myoglobin and the fossil record: A phylogenetic synthesis. Nature 246: 389–395.

    Google Scholar 

  • Romero-Herrera, A. E., Lehmann, H., Joysey. K. A., and Friday. A. E.. 1978. On the evolution of myoglobin. Phil. Trans. R. Soc. Lond. B 283: 61–163.

    Google Scholar 

  • Romero-Herrera, A. E., Lieska, N., and Nasser. S., 1979. Characterization of the myoglobine Petromvzon marinas, J. Mol. Evol. 14: 259–266.

    Article  PubMed  CAS  Google Scholar 

  • Shoshani, J., Goodman, M., Barnhart, M.. Prychodko, W., Vereshchagin, N. K.. and Mikhelson, V. M., 1981, Blood cells and proteins in the Magadan mammoth calf: Immunodiffusion comparisons of Mammuthus to extant paenungulates and tissue ultrastructure, in: The Magadan Mammoth ( N. K. Vereshchagin, ed.), Nauka, Leningrad.

    Google Scholar 

  • Simons, E., 1976, The fossil record of primate phylogeny. in: Molecular Anthropology ( M. Goodman and R. E. Tashian, eds.), Plenum Press, New York, pp. 35–62.

    Google Scholar 

  • Simpson, G. G., 1945, The principles of classification and a classification of mammals. Bull. Am. Mus. Nat. Hist. 85: 1–350.

    Google Scholar 

  • Sokal, R. R., and Michener, C. D., 1958, A statistical method for evaluating systematic relationships, Univ. Kans. Sci. Bull. 38: 1409–1438.

    Google Scholar 

  • Szalay, F. S., and Delson, E., 1979. Evolutionary History of the Primates. Academic Press. New York.

    Google Scholar 

  • Takagi, T., Nemoto, T., and Konishi, K., 1980, The amino acid sequence of the calmodulin obtained from sea anemone (Metridium senile) muscle, Biochem. Biophvs. Res. Commun. 96: 377–381.

    Article  CAS  Google Scholar 

  • Takano, T., 1977, Structure of myoglobin refined at 2.0 A resolution. J. Mol. Biol. 110:537–584.

    Google Scholar 

  • Tashian, R. E., Hewett-Emmett, D., Stroup, S. K., Goodman, M.. and Yu, Y.-S. L., I980a. Evolution of structure and function in the carbonic anhydrase isozymes of mammals. in: Biophysics and Physiology of Carbon Dioxide (C. Bauer. G. Gros. and H. Bartels. eds.), Springer-Verlag, Berlin, pp. 165–176.

    Google Scholar 

  • Tashian, R. E.. Hewett-Emmett. D., and Goodman, M.. 1980b, Evolutionary diversity in the structure and activity of carbonic anhydrase, in: Protides of the Biological Fluids (H. Peeters, ed.), Volume 28, Pergamon Press, Oxford. pp. 153–156.

    Google Scholar 

  • Tashian, R. E., Stroup, S. K., and Hall, G. E., 1981, Primary sequence of turtle low-activity red cell carbonic anhydrase: Homology with mammalian low-activity CA 1 isozymes, Fed. Proc. 40: 1677.

    Google Scholar 

  • Van Valen, L., 1966, Deltatheridae, A new order of mammals, Bull. Am. Mus. Nut. Dist. 132: 1–126.

    Google Scholar 

  • Walker, A., 1976, Splitting times among hominoids deduced from the fossil record, in: Molecular Anthropology ( M. Goodman and R. E. Tashian, eds.), Plenum Press, New York, pp. 63–77.

    Google Scholar 

  • Wicken, J. S., 1980, A thermodynamic theory of evolution, J. Theor. Biol. 87: 9–23.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, A. C., Carlson, S. S., and White, T. J., 1977, Biochemical evolution. Anna. Rev. Biochem. 46: 573–639.

    Article  CAS  Google Scholar 

  • Yunis, J. J., and Prakash, Om., 1982, The origin of man: A chromosomal pictorial legacy. Science 215: 1525–1530.

    Article  PubMed  CAS  Google Scholar 

  • Zuckerkandl, E.. 1976, Programs of gene action and progressive evolution, in: Molecular Anthropology ( M. Goodman and R. E. Tashian. eds.), Plenum Press. New York. pp. 387–447.

    Google Scholar 

  • Zuckerkandl, E.. and Pauling, L.. 1962. Molecular disease, evolution, and genetic heterogeneity, in: Horizons in Biochemistry ( M. Kasha and N. Pullman. eds.). Academic Press, New York, pp. 189–225.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Goodman, M., Romero-Herrera, A.E., Dene, H., Czelusniak, J., Tashian, R.E. (1982). Amino Acid Sequence Evidence on the Phylogeny of Primates and Other Eutherians. In: Goodman, M. (eds) Macromolecular Sequences in Systematic and Evolutionary Biology. Monographs in Evolutionary Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4283-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4283-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4285-4

  • Online ISBN: 978-1-4684-4283-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics