Skip to main content

Liposome-Mediated DNA Transfer

  • Chapter
Book cover Techniques in Somatic Cell Genetics

Abstract

The DNA-mediated transfer of genes has been used extensively as a tool for genetic study of both prokaryotic and eukaryotic cells. For those cells for which DNA transformation systems have been developed, gene transfer has yielded a wealth of detail for bacterial (Avery et al., 1944), yeast (Hinnen et al., 1978), and animal cell (McBride and Athwall, 1977; Wigler et al., 1977) molecular biology. A variety of techniques have been used to effect the introduction of relatively unpurified nucleic acids into eukaryotic cells, including cell: cell fusion (Ringertz and Savage, 1976) and uptake of isolated nuclei, microcells (Fournier and Ruddle, 1977), bacterial protoplasts (Schaffner, 1980), viruses (Hamer et al., 1979; Mulligan et al., 1979), or whole chromosomes (McBride and Athwall, 1977) by cells. Purified nucleic acids can be introduced into cells as calcium phosphate coprecipitates (Graham and Van der Eb, 1973) or polycation complexes (McCutchen and Pagano, 1968), which may be endocytosed. In addition, cryoprotectants and polyalcohols (Hinnen et al., 1978; Stow and Wilkie, 1976) also facilitate nucleic acid uptake. Direct introduction of genetic material into cells can be accomplished by microinjection with small capillary needles (Capecchi, 1980; Anderson et al., 1980) or by prepackaging the nucleic acid in carriers such as liposomes (phospholipid vesicles*) or red blood cell ghosts (Straus and Raskas, 1980). While specific successes have been attained by all the methods mentioned, this chapter will deal with the methods, advantages, and potential of liposomes as carriers of nucleic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, W., Killos, L., Sanders-Haigh, L., Kretschmer, P., and Diakumakos, E., 1980, Replication and expression of thymidine kinase and human globin genes microinjected into mouse fibroblasts, Proc. Natl. Acad. Sci. USA 77:5399–5403.

    Article  PubMed  CAS  Google Scholar 

  • Avery, O. T., Macleod, C. M., and McCarty, M., 1944, Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a deoxyribonucleic acid fraction isolated from pneumococcus Type III, J. Exp. Med. 79:137–158.

    Article  PubMed  CAS  Google Scholar 

  • Bangham, A., Standish, M., and Watkins, J., 1964, Diffusion of univalent ions across the lamellae of swollen phospholipids, J. Mol. Biol. 13:238–52.

    Article  Google Scholar 

  • Bartlett, G., 1959, Phosphorous assay in column chromatography, J. Biol. Chem. 234:466–68.

    PubMed  CAS  Google Scholar 

  • Capecchi, M., 1980, High efficiency transformation by direct microinjection of DNA into cultured mammalian cells, Cell 22:479–88.

    Article  PubMed  CAS  Google Scholar 

  • Chen, H. W., Kandutsch, A. A., and Waymouth, C., 1974, Inhibition of cell growth by oxygenated derivatives of cholesterol, Nature 251:419–21.

    Article  PubMed  CAS  Google Scholar 

  • Deamer, D., and Bangham, A., 1976, Large volume liposomes by an ether vaporization method, Biochim. Biophys. Acta 443:629–34.

    Article  PubMed  CAS  Google Scholar 

  • Deamer, D., and Uster, P., 1980, Liposome preparation methods and monitoring liposome fusion, in: Introduction of Macromolecules into Viable Mammalian Cells (R. Baserga, C. Croce, and G. Roueza, eds.), Alan R. Liss, New York, 205–20.

    Google Scholar 

  • de Duve, C., de Barsy, T., Poole, B., Trouet, A., Tulkens, P., and van Hoof, F., 1974, Lysosomotropic agents, Biochem. Pharmacol. 23:2495–531.

    Article  PubMed  Google Scholar 

  • Dellaporta, S., Fraley, R., Giles, K., Papahadjopoulos, D., Powell, A., Thomashow, M., Nester, E., and Gordon, M., 1982, Plant protoplast transformation by liposome-encapsulated Ti plasmid of Agrobacterium tumefaciens, In preparation.

    Google Scholar 

  • Dimitriadis, G., 1978, Translation of rabbit globin mRNA introduced by liposomes into mouse lymphocytes, Nature 274:923–4.

    Article  PubMed  CAS  Google Scholar 

  • Enoch, H., and Strittmatter, P., 1979, Formation and properties of 1000-A-diameter single bilayer phospholipid vesicles, Proc. Natl. Acad. Sci. USA 76:145–9.

    Article  PubMed  CAS  Google Scholar 

  • Fournier, R., and Ruddle, F., 1977, Microcell-mediated transfer of murine chromosomes into mouse, Chinese hamster, and human somatic cells, Proc. Natl. Acad. Sci. USA 74:319–23.

    Article  PubMed  CAS  Google Scholar 

  • Fraley, R., and Papahadjopoulos, D., 1981, New generation liposomes: The engineering of an efficient vehicle for intracellular delivery of nucleic acids, Trends Biochem. Sci. 6:77–80.

    Article  CAS  Google Scholar 

  • Fraley, R., and Papahadjopoulos, D., 1982, Liposomes: The development of a new carrier system for introducing nucleic acids into plant and animal cells, in: Current Topics in Microbiology and Immunology: Gene Cloning in Organisms Other Than E. coli, (P. H. Hof Schneider and W. Goebel, eds.), Vol. 96, pp. 171–192, Springer-Verlag, Heidelberg.

    Chapter  Google Scholar 

  • Fraley, R., Fornari, C., and Kaplan, S., 1979, Entrapment of a bacterial plasmid in phospholipid vesicles: Potential for gene transfer, Proc. Natl. Acad. Sci. USA 76:3348–52.

    Article  PubMed  CAS  Google Scholar 

  • Fraley, R., Subramani, S., Berg, P., and Papahadjopoulos, D., 1980, Introduction of liposomeencapsulated SV40 DNA into cells, J. Biol. Chem. 255:10431–35.

    PubMed  CAS  Google Scholar 

  • Fraley, R., Straubinger, R. M., Rule, G., Springer, E. L, and Papahadjopoulos, D., 1981, Liposomemediated delivery of deoxyribonucleic acid: Enhanced efficiency of delivery by changes in lipid composition and incubation conditions, Biochemistry 20:6978–6987.

    Article  PubMed  CAS  Google Scholar 

  • Fraley, R., Dellaporta, S., and Papahadjopoulos, D., 1982, Liposome-mediated delivery of TMV RNA into tobacco protoplasts: A sensitive assay for monitoring liposome-protoplast interactions, Proc. Natl. Acad. Sci. USA 79:1859–63.

    Article  PubMed  CAS  Google Scholar 

  • Graham, F., and Van der Eb, A., 1973, A new technique for the assay of infectivity of human Adenovirus 5 DNA, Virology 52:456–60.

    Article  PubMed  CAS  Google Scholar 

  • Gregoriadis, G., and Davis, C., 1979, Stability of liposomes in vivo and in vitro is promoted by their cholesterol content and the presence of blood cells, Biochem. Biophys. Res. Commun. 89:1287–92.

    Article  PubMed  CAS  Google Scholar 

  • Hamer, D. H., Smith, K. D., Boyer, S. H., and Leder, P., 1979, SV40 recombinants carrying rabbit β-globin gene coding sequence, Cell 17:725–35.

    Article  PubMed  CAS  Google Scholar 

  • Heath, T., Fraley, R., and Papahadjopoulos, D., 1980a, Antibody targeting of liposomes: Cell specificity obtained by conjugation of F(ab′)2 to the vesicle surface, Science 210:539–41.

    Article  PubMed  CAS  Google Scholar 

  • Heath, T. D., Robertson, D., Birback, M. S. C., and Davies, A. J. S., 1980b, Covalent attachment of horseradish peroxidase to the outer surface of liposomes, Biochim. Biophys. Acta 599:42–62.

    Article  PubMed  CAS  Google Scholar 

  • Heath, T., Macher, B. A., and Papahadjopoulos, D., 1981, Covalent attachment of immunoglobulins to liposomes via glycosphingolipids, Biochim. Biophys. Acta. 640:66–82.

    Article  PubMed  CAS  Google Scholar 

  • Helenius, A., Kartenbeck, J., Simons, K., and Fries, E., 1980, On the entry of Semliki Forest Virus into BHK-21 cells, J. Cell. Biol. 84:404–20.

    Article  PubMed  CAS  Google Scholar 

  • Hinnen, A., Hicks, J., and Fink, G., 1978, Transformation of yeast, Proc. Natl. Acad. Sci. USA 75:1929–33.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, R., Margolis, P., and Bergelson, L., 1978, Binding and entrapment of high molecular weight DNA by lecithin liposomes, FEBS Lett. 93:365–8.

    Article  PubMed  CAS  Google Scholar 

  • Huang, C., 1969, Studies on phosphatidylcholine vesicles. Formation and physical characteristics, Biochemistry 8:344–52.

    Article  PubMed  CAS  Google Scholar 

  • Huang, A. C., Huang, L., and Kennel, S. J., 1980, Monoclonal antibody covalently coupled with fatty acid. A reagent for in vitro liposome targeting, J. Biol. Chem. 255:8015–8.

    PubMed  CAS  Google Scholar 

  • Jonah, M., Cerny, E. A., and Rahman, Y. E., 1978, Tissue distribution of EDTA encapsulated within liposomes of varying surface properties, Biochim. Biophys. Acta 541:321–3.

    Article  PubMed  CAS  Google Scholar 

  • Kates, M., 1972, Techniques in lipidology, in: Laboratory Techniques in Biochemistry and Molecular Biology (T. S. Work and E. Work, eds.), North-Holland, New York.

    Google Scholar 

  • Kimelberg, H., and Mayhew, E., 1978, Properties and biological effects of liposomes and their uses in pharmacology and toxicology, CRC Crit. Rev. Toxicol. 6:25–78.

    Article  CAS  Google Scholar 

  • Leserman, L., Barbet, J., Kourilsky, R., and Weinstein, J., 1980, Targeting to cells of fluorescent liposomes covalently coupled with monoclonal antibody or protein A, Nature 288:602–4.

    Article  PubMed  CAS  Google Scholar 

  • Lurquin, P., 1979, Entrapment of plasmid DNA by liposomes and their interactions with plant protoplasts, Nucleic Acid Res. 6:3773–84.

    Article  PubMed  CAS  Google Scholar 

  • Martin, F., Hubbel, W., and Papahadjopoulos, D., 1981, Immunospecific targeting of liposomes to cells: a novel and efficient method for covalent attachement of Fab’ fragments via disulfide bonds, Biochemistry 20:4429–38.

    Article  Google Scholar 

  • Mauk, M., Gamble, R., and Baldeschwieler, J., 1980, Vesicle-targeting: Timed release and specificity for leukocytes in mice by subcutaneous injection, Science 207:309–11.

    Article  PubMed  CAS  Google Scholar 

  • Mayhew, E., Rustum, Y., Szoka, F., and Papahadjopoulos, D., 1979, Role of cholesterol in enhancing the anti-tumor effect of 1-β-D arabinofuranosyl cytosine entrapped in liposomes, Cancer Treatm. Rep. 63(11-12): 1923–8.

    CAS  Google Scholar 

  • McBride, O., and Athwall, R., 1977, Genetic analysis by chromosome-mediated gene transfer, In Vitro 12:777–86.

    Article  Google Scholar 

  • McCutchen, J., and Pagano, J., 1968, Enhancement of the infectivity of Simian Virus 40 deoxyribonucleic acid with diethylaminoethyldextran, J. Natl. Cancer Inst. 41:351–7.

    Google Scholar 

  • Miller, D. K., and Lenard, J., 1980, Inhibition of Vesicular Stomatitis Virus infection by spike glycoprotein. Evidence for an intracellular, G protein-requiring step, J. Cell. Biol. 84:430–7.

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee, A., Orloff, S., Butler, J., Triche, T., Lalley, P., and Schulman, J., 1978, Entrapment of metaphase chromosomes into phospholipid vesicles (lipochromosomes): Carrier potential in gene transfer, Proc. Natl. Acad. Sci. USA 75:1361–5.

    Article  PubMed  CAS  Google Scholar 

  • Mulligan, R. C., Howard, B. H., and Berg, P., 1979, Synthesis of rabbit β-globin in cultured monkey kidney cells following infection with a SV40 β-globin recombinant genome, Nature 277:108–14.

    Article  PubMed  CAS  Google Scholar 

  • Nicolson, G., and Poste, G., 1978, Mechanism of resistance to ricin toxin in selected mouse lymphoma lines, J. Supramol. Struct. 8:235–45.

    Article  PubMed  CAS  Google Scholar 

  • Olson, F., Hunt, C., Vail, W., and Papahadjopoulos, D., 1979, Preparation of liposomes of defined size by extrusion through polycarbonate filters, Biochim. Biophys. Acta 557:9–23.

    Article  PubMed  CAS  Google Scholar 

  • Ostro, M., Giacomoni, D., Lavelle, D., Paxton, W., and Dray, S., 1978, Evidence for translation of rabbit globin mRNA after liposome-mediated insertion into a human cell line, Nature 274:921–3.

    Article  PubMed  CAS  Google Scholar 

  • Pagano, R., and Weinstein, J., 1978, Interaction of liposomes with mammalian cells, Ann. Rev. Biophys. Bioeng. 7:435–68.

    Article  CAS  Google Scholar 

  • Papahadjopoulos, D., 1978, Liposomes and Their Uses in Biology and Medicine, New York Academy of Sciences, New York.

    Google Scholar 

  • Papahadjopoulos, D., and Kimelberg, H., 1973, Phospholipid vesicles (liposomes) as models for biological membranes, in: Progress in Surface Science, Volume 4 (S. G. Davidson, ed.), Pergamon Press, New York, pp. 141–232.

    Google Scholar 

  • Papahadjopoulos, D., and Miller, W., 1967, Phospholipid model membranes. I. Structural characteristics of hydrated liquid crystals, Biochim. Biophys. Acta 135:624–38.

    Article  PubMed  CAS  Google Scholar 

  • Papahadjopoulos, D., and Watkins, J. C., 1967, Phospholipid model membranes. II. Permeability properties of hydrated liquid crystals, Biochim. Biophys. Acta 135:639–52.

    Article  PubMed  CAS  Google Scholar 

  • Papahadjopoulos, D., Nir, S., and Ohki, S., 1972, Permeability properties of phospholipid membranes: Effect of cholesterol and temperature, Biochim. Biophys. Acta 266:561–71.

    Article  PubMed  CAS  Google Scholar 

  • Papahadjopoulos, D., Vail, W., Jacobson, K., and Poste, G., 1975, Cochleate lipid cylinders: Formation by fusion of unilamellar vesicles, Biochim. Biophys. Acta 394:483–91.

    Article  PubMed  CAS  Google Scholar 

  • Papahadjopoulos, D., Vail, W., Pangborn, W., and Poste, G., 1976, Studies on membrane fusion II: Induction of membrane fusion in pure phospholipid membranes by calcium ions and other divalent metals, Biochim. Biophys. Acta 448:265–83.

    Article  PubMed  CAS  Google Scholar 

  • Papahadjopoulos, D., Wilson, T., and Taber, R., 1980a, Liposomes as macromolecular carriers for the introduction of RNA and DNA into cells, in: Transfer of Cell Constituents into Eukaryotic Cells (J. Celis, A. Graessman, and A. Loyter, eds.), Plenum Press, New York.

    Google Scholar 

  • Papahadjopoulos, D., Wilson, T., and Taber, R., 1980b, Liposomes as vehicles for cellular incorporation of biologically active macromolecules, In Vitro 16:49–54.

    Article  Google Scholar 

  • Pietronigro, D. D., Jones, W. B. G., Katy, K., Demopoulos, H. B., 1977, Interaction of DNA and liposomes as a model of membrane-mediated DNA damage, Nature 267:78–9.

    Article  PubMed  CAS  Google Scholar 

  • Poste, G., 1980, The interaction of lipid vesicles (liposomes) with cultured cells and their use as carriers for drugs and macromolecules, in: Liposomes in Biological Systems (G. Gregoriadis and A. Allison, eds.), Wiley, New York, pp. 101–51.

    Google Scholar 

  • Ringertz, N., and Savage, R., 1976, Cell Hybrids, Academic Press, New York, pp. 1–366.

    Google Scholar 

  • Schaffner, W., 1980, Direct transfer of cloned genes from bacteria to mammalian cells, Proc. Natl. Acad. Sci. USA 77:2163–7.

    Article  PubMed  CAS  Google Scholar 

  • Stow, N., and Wilkie, N., 1976, An improved technique for obtaining enhanced infectivity with Herpes Simplex Virus Type I DNA, J. Gen. Virol. 33:447–58.

    Article  PubMed  CAS  Google Scholar 

  • Straus, S., and Raskas, H., 1980, Transfection of KB cells by polyethylene glycol-induced fusion with erythrocyte ghosts containing Adenovirus Type II DNA, J. Gen. Virol. 48:241–5.

    Article  PubMed  CAS  Google Scholar 

  • Szoka, F., and Papahadjopoulos, D., 1978, Procedure for preparing liposomes with large internal aqueous space and high capture by reverse-phase evaporation, Proc. Natl. Acad. Sci. USA 75:145–9.

    Article  Google Scholar 

  • Szoka, F., and Papahadjopoulos, D., 1980, Comparative properties and methods of preparation of lipid vesicles (liposomes), Ann. Rev. Biophys. Bioeng. 9:467–508.

    Article  CAS  Google Scholar 

  • Szoka, F., Jacobson, K., and Papahadjopoulos, D., 1979, The use of aqueous space markers to determine the mechanism of interaction between phospholipid vesicles and cells, Biochim. Biophys. Acta 551:295–303.

    PubMed  CAS  Google Scholar 

  • Szoka, F., Olson, F., Heath, T., Vail, W., Mayhew, E., and Papahadjopoulos, D., 1980, Preparation of unilamellar liposomes of intermediate size (0.1–0.2 μm) by a combination of reverse-phase evaporation and extrusion through polycarbonate membranes, Biochim. Biophys. Acta 601:559–71.

    Article  PubMed  CAS  Google Scholar 

  • Szoka, F., Magnusson, K. E., Wojcieszyn, J., Hou, Y., Derzko, Z., and Jacobson, K. 1981, Use of lectins and polyethylene glycol for fusion of glycolipid-containing liposomes with eukaryotic cells, Proc. Natl. Acad. Sci. USA 78:1685–9.

    Article  PubMed  CAS  Google Scholar 

  • Tyrrell, D., Heath, T., Colley, C., and Ryman, B., 1976, New aspects of liposomes, Biochim. Biophys. Acta 457:259–302.

    PubMed  CAS  Google Scholar 

  • Van Renswoude, J., and Hoekstra, D., 1981, Cell-induced leakage of liposome contents, Biochemistry 20:540–6.

    Article  PubMed  Google Scholar 

  • Wigler, M., Silverstein, S., Lee, L., Pelecer, A., Cheng, Y., and Axel, R., 1977, Transfer of purified Herpes Virus thymidine kinase gene to cultured mouse cells, Cell 11:223–32.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, T., Papahadjopoulos, D., and Taber, R., 1977: Biological properties of poliovirus encapsulated in lipid vesicles: Antibody resistance and infectivity in virus resistant cells, Proc. Natl. Acad. Sci. USA 74:3471–5.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, T., Papahadjopoulos, D., and Taber, R., 1979, The introduction of poliovirus RNA into cells via lipid vesicles (liposomes), Cell 17:77–84.

    Article  PubMed  CAS  Google Scholar 

  • Wong, T.-K., Nicolau, C., Hofschneider, P., 1980, Appearance of β lactamase activity in animal cells upon liposome-mediated gene transfer, Gene 10:87–94.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Straubinger, R.M., Papahadjopoulos, D. (1982). Liposome-Mediated DNA Transfer. In: Shay, J.W. (eds) Techniques in Somatic Cell Genetics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4271-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4271-7_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4273-1

  • Online ISBN: 978-1-4684-4271-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics