Skip to main content

Mitochondrial Influences in Hybrid Cells

  • Chapter
Techniques in Somatic Cell Genetics

Abstract

The analysis of genetic mechanisms underlying phenotypic expression in somatic cells depends on techniques which can demonstrate the presence of particular heritable components. For genetic elements located in the nucleus of the cell, numerous chromosomal, drug resistance, and biochemical markers are now available which allow study of specific loci. Similarly, for the analysis of mitochondrial inheritance in somatic cells there has been increased availability of drug resistance markers which can be transmitted by cytoplasmic transfer (Bunn et al., 1974; Lictor and Getz, 1978; Harris, 1978). Specific differences in buoyant density and restriction endonuclease digest patterns of mitochondrial DNA also have served as markers for the identification of cytoplasmic genetic determinants (Dawid et al., 1974; Case and Wallace, 1981).

“Although the law, that the substances giving the definite and hereditary characters to the cell are entirely contained in the nucleus, is at times spoken of as a very probable hypothesis ... ”

“Simple reflection shows ... that the determination whether or not this Theory of Inheritance (Vererbungs-Theorie) is true, can be settled in one way alone, viz., to take two different sorts of cells, utilizing the nucleus of one and the protoplasm of the other, to form a new cell. If the nucleus and protoplasm are so constituted that they can exist together, then will the properties arising from this cell, made artificially, answer our question. For then either the exclusive qualities of that cell will develop which had held the nucleus, or those will arise that come from the protoplasm, or lastly, from a mixture of both . . . ” (Boveri, 1893).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Attardi, B., and Attardi, G., 1972, Fate of mitochondrial DNA in human-mouse somatic cell hybrids, Proc. Natl. Acad. Sci. USA 69:129–133.

    Article  PubMed  CAS  Google Scholar 

  • Boveri, T., 1893, An organism produced sexually without characteristics of the mother, Am. Naturalist 27:222–232.

    Article  Google Scholar 

  • Bunn, C. L., Wallace, D. C., and Eisenstadt, J. M., 1974, Cytoplasmic inheritance of chloramphenicol resistance in mouse tissue culture cells, Proc. Natl. Acad. Sci. USA 71:1681–1685.

    Article  PubMed  CAS  Google Scholar 

  • Case, J. T., and Wallace, D. C., 1981, Maternal inheritance of mitochondrial DNA polymorphisms in cultured human fibroblasts, Somat. Cell Genet. 7:103–108.

    Article  PubMed  CAS  Google Scholar 

  • Clayton, D. A., Teplitz, R. L., Nabholz, M., Dovey, H., and Bodmer, W., 1971, Mitochondrial DNA of human-mouse cell hybrids, Nature 234:560–562.

    Article  PubMed  CAS  Google Scholar 

  • Coon, H. G., Horak, I., and Dawid, I. B., 1973, Propagation of both parental mitochondrial DNAs in rat-human and mouse-human hybrid cells, J. Mol. Biol. 81:285–298.

    Article  PubMed  CAS  Google Scholar 

  • Dawid, I. G., Horak, I., and Coon, H. G., 1974, The use of somatic cells as an approach to mitochondrial genetics in animals, Genetics 78:459–479.

    PubMed  CAS  Google Scholar 

  • De Francesco, L., Attardi, G., and Croce, C. M., 1980, Uniparental propagation of mitochondrial DNA in mouse-human cell hybrids, Proc. Natl. Acad. Sci. USA 77:4079–4083.

    Article  PubMed  Google Scholar 

  • Ditta, G., Soderberg, K., Landy, F., and Scheffler, I. E., 1976, The selection of Chinese hamster cells deficient in oxidative energy metabolism, Somat. Cell Genet. 2:331–344.

    Article  PubMed  CAS  Google Scholar 

  • Doersen, C., and Stanbridge, E. J., 1979, Cytoplasmic inheritance of erythromycin resistance in human cells, Proc. Natl. Acad. Sci. USA 76:4549–4553.

    Article  PubMed  CAS  Google Scholar 

  • Dujon, B., Kruszewska, A., Slonimski, P. P., Bolotin-Fukuhara, M., Coen, D., Deutsch, J., Netter, P., and Weill, L., 1975, Mitochondrial Genetics X: Effects of UV irradiation on transmission and recombination of mitochondrial genes in Saccharomyces cerevisiae, Mol. Gen. Genet. 137:29–72.

    Google Scholar 

  • Eliceiri, G. L., 1973, The mitochondrial DNA of hamster-mouse hybrid cells, FEBS Lett. 36:232–234.

    Article  PubMed  CAS  Google Scholar 

  • Gear, A. R. L., 1974, Rhodamine 6G: A potent inhibitor of mitochondrial oxidative phosphorylation, J. Biol. Chem. 249:3628–3637.

    PubMed  CAS  Google Scholar 

  • Gillham, N. W., Boynton, J. E., and Lee, R. W., 1974, Segregation and recombination of non-Mendelian genes in Chlamydomonas, Genetics 78:439–457.

    PubMed  CAS  Google Scholar 

  • Graves, J. A. M., 1972, Cell cycles and chromosome replication patterns in interspecific somatic hybrids, Exp. Cell Res. 73:81–94.

    Article  PubMed  CAS  Google Scholar 

  • Graves, J. A. M., and Koschel, K. W., 1980, Changes in the cell cycle during culture of mousechinese hamster cell hybrids, J. Cell. Physiol. 102:209–216.

    Article  PubMed  CAS  Google Scholar 

  • Harris, M., 1978, Cytoplasmic transfer of resistance to antimycin A in Chinese hamster cells, Proc. Natl. Acad. Sci. USA 75:5604–5608.

    Article  PubMed  CAS  Google Scholar 

  • Harris, M., 1980, Pyruvate blocks expression of sensitivity to antimycin A and chloramphenicol, Somat. Cell Genet. 6:699–708.

    Article  PubMed  CAS  Google Scholar 

  • Humphrey, R. M., and Hsu, T. C., 1965, Further studies on biological properties of mammalian cell lines resistant to 5-bromodeoxyuridine, Texas Rep. Biol. Med. 23:321.

    Google Scholar 

  • Jami, J., and Grandchamp, S., 1971, Karyological properties of human-mouse somatic hybrids, Proc. Natl. Acad. Sci. USA 68:3097–3101.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, L. V., Walsh, M. L., and Chen, L. B., 1980, Localization of mitochondria in living cells with rhodamine 123, Proc. Natl. Acad. Sci. USA 77:990–994.

    Article  PubMed  CAS  Google Scholar 

  • Lanfranchi, G., and Marin, G., 1981, Evidence for the derivation of mammalian somatic hybrids from polykaryocytes, Exp. Cell Res. 133:255–260.

    Article  PubMed  CAS  Google Scholar 

  • Lichtor, T., and Getz, G. S., 1978, Cytoplasmic inheritance of rutamycin resistance in mouse fibroblasts, Proc. Natl. Acad. Sci. USA 75:324–328.

    Article  PubMed  CAS  Google Scholar 

  • Mascarello, J. T., Soderberg, K., and Scheffler, I. E., 1980, Assignment of a gene for succinate dehydrogenase to human chromosome 1 by somatic cell hybridization, Cytogenet. Cell Genet. 28:121–135.

    Article  PubMed  CAS  Google Scholar 

  • Matsuya, H., and Green, H., 1969, Somatic cell hybrid between the established human line D98 (presumptive HeLa) and 3T3, Science 163:697–698.

    Article  PubMed  CAS  Google Scholar 

  • Sager, R., and Ramanis, Z., 1967, Biparental inheritance of nonchromosomal genes induced by ultraviolet irradiation, Proc. Natl. Acad. Sci. USA 58:931–937.

    Article  PubMed  CAS  Google Scholar 

  • Sager, R., and Ramanis, Z., 1973, The mechanism of maternal inheritance in Chlamydomonas: Biochemical and genetic studies, Theor. Appl. Genet. 43:101–108.

    Article  CAS  Google Scholar 

  • Strugger, S., 1938, Die Vitalfärbung des Protoplasmas mit Rhodamin B und 6G, Protoplasma 30:85–100.

    Article  CAS  Google Scholar 

  • Wallace, D. C., and Eisenstadt, J. M., 1979, Expression of cytoplasmically inherited genes for chloramphenicol resistance in interspecific somatic cell hybrids and cybrids, Somat. Cell Genet. 5:373–396.

    Article  CAS  Google Scholar 

  • Ziegler, M. L., and Davidson, R. L., 1979, The effect of hexose on chloramphenicol sensitivity and resistance in Chinese hamster cells, J. Cell. Physiol. 98:627–636.

    Article  PubMed  CAS  Google Scholar 

  • Ziegler, M. L., and Davidson, R. L., 1981, Elimination of mitochondrial elements and improved viability in hybrid cells, Somat. Cell Genet. 7:73–88.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Ziegler, M.L. (1982). Mitochondrial Influences in Hybrid Cells. In: Shay, J.W. (eds) Techniques in Somatic Cell Genetics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4271-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4271-7_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4273-1

  • Online ISBN: 978-1-4684-4271-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics