Skip to main content

Prevention of Phosphate Induced Progression of Experimental Uremia by 3-Phosphocitric Acid

  • Chapter
Regulation of Phosphate and Mineral Metabolism

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 151))

  • 176 Accesses

Abstract

Excess dietary phosphate produces progressive increase in calcium content of the kidney and also leads to progressive deterioration of renal function1–3. The important variables responsible for determination of both the rate of deposition of calcium and loss of renal function are the quantity of dietary phosphate, the amount of functioning renal tissue and the level of parathyroid activity3,4. Given sufficient reduction in the size of the functioning renal mass, progressive deposition of calcium can be demonstrated in the kidney of animals maintained on a diet of normal phosphate content5. The histologic changes associated with these progressive calcium deposits provide convincing evidence of the structural damage produced, apparently resulting from cellular damage associated with calcium phosphate deposition 3,6.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. M. MacKay, and J. Oliver, Renal damage following the ingestion of a diet containing an excess of inorganic phosphate, J. Exp. Med. 61:319 (1935).

    Article  PubMed  CAS  Google Scholar 

  2. A. M. Pappenheimer, The effect of experimental reduction of kidney substance upon the parathyroid glands and skeletal tissue, J. Exp. Med. 64:965 (1936).

    Article  PubMed  CAS  Google Scholar 

  3. J. Craig, Observations on the kidney after phosphate loading in the rat, Arch. Pathol. 68:306 (1959).

    PubMed  CAS  Google Scholar 

  4. P. Haase, Parathyroid stimulation in phosphate-induced nephro-calcinosis, J. Ant. 125:299 (1978).

    CAS  Google Scholar 

  5. L. S. Ibels, A. C. Alfrey, L. L. Haut, and W. E. Huffer, Preservation of function in experimental renal disease by dietary restriction of phosphate, N. Engl. J. Med. 298:122 (1978).

    Article  PubMed  CAS  Google Scholar 

  6. L. L. Haut, A. C. Alfrey, S. Guggenheim, B. Buddington, and N. Schrier, Renal toxicity of phosphates in rats, Kidney Int. 17:722 (1980).

    Article  PubMed  CAS  Google Scholar 

  7. W. P. Tew, C. Mahle, J. Benavides, J. E. Howard, and A. L. Lehninger, Synthesis and characterization of phosphocitric acid, a potent inhibitor of hydroxyapatite crystal growth, Biochemistry 19:1983 (1980).

    Google Scholar 

  8. J. E. Howard, Studies on urinary stone formation: A saga of clinical investigation, Johns Hopkins Med. J. 139:239 (1976).

    PubMed  CAS  Google Scholar 

  9. W. P. Tew, C. D. Malis, and W. G. Walker, The effects of phosphocitrate on experimentally induced nephrocalcinosis, Kidney Int. 19:117 (1981).

    Google Scholar 

  10. L. Gimenez, W. P. Tew, J. A. Hermann, and W. G. Walker, Prevention of phosphate-induced renal insufficiency by phosphocitrate, Kidney Int. 19:110 (1981).

    Google Scholar 

  11. J. M. Kaufman, H. J. DiMeola, N. J. Siegel, B. Lytton, M. Kashgarian, and J. P. Hayslett, Compensatory adaptation of structure and function following progressive renal ablation, Kidney Int. 6:10 (1974).

    Article  PubMed  CAS  Google Scholar 

  12. H. E. Harrison, and H. C. Harrison, Inhibition of urine citrate excretion and the production of renal calcinosis in the rat by acetazoleamide administration, J. Clin. Invest. 34:1662 (1955).

    Article  PubMed  CAS  Google Scholar 

  13. J. F. Van Pilsum, Determination of creatinine and related guanidinium compounds, in: “Methods of Biochemical Analysis,” D. Glick, ed., Interscience Publishers, New York 7:193 (1959).

    Google Scholar 

  14. C. H. Fiske, and Y. Subbarow, The colorimetric determination of phosphorus, J. Biol. Chem. 66:375 (1925).

    CAS  Google Scholar 

  15. D. McFarlane, Experimental phosphate nephritis in the rat, J. Pathol. 52:17 (1941).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Walker, W.G., Gimenez, L., Tew, W.P., Hermann, J.A. (1982). Prevention of Phosphate Induced Progression of Experimental Uremia by 3-Phosphocitric Acid. In: Massry, S.G., Letteri, J.M., Ritz, E. (eds) Regulation of Phosphate and Mineral Metabolism. Advances in Experimental Medicine and Biology, vol 151. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4259-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4259-5_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4261-8

  • Online ISBN: 978-1-4684-4259-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics