Skip to main content

Nephron Sites of Adaptation to Changes in Dietary Phosphate

  • Chapter
Regulation of Phosphate and Mineral Metabolism

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 151))

Abstract

Studies of the renal adaptation to changes in the dietary intake of phosphate have provided important insights into the mechanisms of regulation of phosphate transport by the renal tubule, Troehler, Bonjour and Fleisch (1) and Steele and DeLuca (2) showed that phosphate deprivation results in marked increases in phosphate transport which were independent of plasma phosphate and parathyroid hormone. Further, rats fed a low phosphate diet provide a model of resistance to the Phosphaturic response to PTH (3). Whereas the expected increase in cAMP generation and hypocalciuria occur, there is no increase in phosphate excretion. Studies utilizing several different approaches support the concept that adaptive changes in phosphate transport occur in the proximal tubule. In vivo microperfusion, isolated tubule and isolated renal brush border vesicle studies of proximal tubules all illustrate enhanced phosphate transport in animals fed a low phosphate diet (4, 5, 6, 7). Micropuncture studies in dogs also show enhanced phosphate reabsorption in the proximal tubule in phosphate deprivation (8, 9). Accordingly, adaptation of proximal tubule phosphate transport is very likely. However, the contribution of this altered transport to the urinary excretion of phosphate remains controversial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Troehler, U., Bonjour, J-P., and Fleisch, H.: Inorganic phosphate homeostasis: Renal adaptation to the dietary intake in intact and thyroparathyroidectomized rats. J. Clin. Invest. 57:264–273, 1976.

    Article  CAS  Google Scholar 

  2. Steele, T. H. and DeLuca, H. F.: Influence of dietary phosphorus on renal phosphate reabsorption in the parathyroidectomized rat. J. Clin. Invest. 57:867–874, 1976.

    Article  PubMed  CAS  Google Scholar 

  3. Steele, T. H.: Renal resistance to parathyroid hormone during phosphatus deprivation. J. Clin. Invest. 58:1461–1464, 1976.

    Article  PubMed  CAS  Google Scholar 

  4. Ullrich, K. J., Rumrich, G. and Kloss, S.: Phosphate transport in the proximal convolution of the rat kidney. I. Tubular heterogeneity, effect of parathyroid hormone in acute and chronic parathyroidectomized animals and effect of phosphate diet. Pfluegers Arch. 372:269–274, 1977.

    Article  CAS  Google Scholar 

  5. Brazy, P. C., McKeown, J. W., Harris, R. H. and Dennis, V. W.: Comparative effectives of dietary phosphate, unilateral nephrectomy, and parathyroid hormone on phosphate transport by the rabbit proximal tubule. Kidney Int. 17:788–800, 1980.

    Article  PubMed  CAS  Google Scholar 

  6. Stoll, R., Kinne, R. and Murer, H.: Effect of dietary phosphate intake on phosphate transport by isolated rat renal brush-border vesicles. Biochem. J. 180:465–470, 1979.

    PubMed  CAS  Google Scholar 

  7. Kempson, S. A. and Dousa, T. P.: Phosphate transport across renal cortical brush border membrane vesicles from rats stabilized on a normal, high or low phosphate diet. Life Sci. 24:881–888, 1979.

    Article  PubMed  CAS  Google Scholar 

  8. Wong, N. L. M., Quamme, G. A., O’Callaghan, T. J., Sutton, R. A. L. and Dirks, J. H.: Renal tubular transport in phosphate depletion: A micropuncture study. Can. J. Phys. & Pharmacol. 58:1063–1071, 1980.

    Article  CAS  Google Scholar 

  9. Wen, S.-F., Boynar, J. W., Jr. and Stoll, R. W.: Effect of phosphate deprivation on renal phosphate transport in the dog. Am. J. Physiol. 234:F199–F206, 1978.

    PubMed  CAS  Google Scholar 

  10. Muhlbauer, R. C., Bonjour, J-P. and Fleisch, H.: Tubular localization of adaptation to dietary phosphate in rats. Am. J. Physiol. 233:F342–F348, 1977.

    PubMed  CAS  Google Scholar 

  11. Lau, K. and Eby, B.: Tubular mechanisms for the Phosphaturic effects of NH4Cl administration. Am. Soc. Neph. 13th Annual Meeting, 5A, 1980 (abstract)

    Google Scholar 

  12. Turner, S. T. and Dousa, T. P.: Differences in transport capacity for phosphate (Pi) of luminal brush border membrane (BBM) prepared from subcapsular (SC) and jux-tamedullary (JM) cortex. Am. Soc. Neph. 14th Annual meeting, 1981 (abstract).

    Google Scholar 

  13. McKeown, J. W., Brazy, P. C. and Dennis, V. W.: Intrarenal heterogeneity for fluid, phosphate and glucose absorption in the rabbit. Am. J. Physiol. 237:F312–F318, 1979.

    PubMed  CAS  Google Scholar 

  14. Woodhall, P. B., Tisher, C. C., Simonton, C. A. and Robinson, R. R.: Relationship between para-aminohippurate secretion and cellular morphology in rabbit proximal. J. Clin. Invest. 61:1320–1329, 1978.

    Article  PubMed  CAS  Google Scholar 

  15. Valtin, H.: Structural and functional heterogeneity of mammalian nephrons. Am. J. Physiol. 233:F491–F501, 1977.

    PubMed  CAS  Google Scholar 

  16. Haramati, A., Haas, J. A. and F. G. Knox: Adaptation of deep and superficial nephrons to changes in dietary phosphate intake. Am. Soc. Neph. 14th Annual meeting, 1981 (abstract).

    Google Scholar 

  17. Pastoriza-Munoz, E., Colindres, R. E., Lassiter, W. E. and Lechene, C.: Effect of parathyroid hormone on phosphate reabsorption in rat distal convolution. Am. J. Physiol. 235:F321–F330, 1978.

    PubMed  CAS  Google Scholar 

  18. Peraino, R. A. and Suki, W. N.: Phosphate transport by isolated rabbit cortical collecting tubule. Am. J. Physiol. 238:F358–F362, 1980.

    PubMed  CAS  Google Scholar 

  19. Amiel, C., Kuntziger, J. and Richet, G.: Micropuncture study of handling of phosphate by proximal and distal nephron in normal and parathyroidectomized rat. Evidence for distal reabsorption. Pfluegers Arch. 317:93–109, 1970.

    Article  CAS  Google Scholar 

  20. Haramati, A. and Knox, F. G.: Is phosphate reabsorbed by the distal nephron? Min. & Elect. Metab. 6:165–173, 1981.

    CAS  Google Scholar 

  21. Poujeol, P., Jamison, R. L. and de Rouffignac, C.: Phosphate reabsorption in juxtamedullary nephron terminal segments. Pfluegers Arch. 387:27–31, 1980.

    Article  CAS  Google Scholar 

  22. Dennis, V. W., Bello-Reuss, E. and Robinson, R.: Response of phosphate transport to parathyroid hormone in segments of rabbit nephron. Am. J. Physiol. 233:F29–F38, 1977.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Knox, F.G., Haas, J.A., Haramati, A. (1982). Nephron Sites of Adaptation to Changes in Dietary Phosphate. In: Massry, S.G., Letteri, J.M., Ritz, E. (eds) Regulation of Phosphate and Mineral Metabolism. Advances in Experimental Medicine and Biology, vol 151. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4259-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4259-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4261-8

  • Online ISBN: 978-1-4684-4259-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics