Skip to main content

Development of Liposomes as an Efficient Carrier System: New Methodology for Cell Targeting and Intracellular Delivery of Drugs and DNA

  • Chapter
Targeting of Drugs

Part of the book series: NATO Advanced Study Institutes Series ((NSSA,volume 47))

Abstract

Liposomes are a valuable carrier system for enhancing the pharmacological activity of drugs and the functional incorporation of macromolecules into cells. During the last few years, we have concentrated on developing new liposome methodology designed to optimize their properties as a carrier system. We will describe some of these procedures related to the following specific topics: (1) efficiency of encapsulation: the reverse phase evaporation method produces large unilamellar vesicles (0.2–0.4 μdiameter) encapsulating approximately 50% of the initial aqueous phase. This procedure is particularly valuable for the encapsulation of large macromolecules such as RNA and DNA which can be entrapped with very high efficiency and no appreciable degradation. (2) control of vesicle size: extrusion of liposomes through nucleopore membranes produces vesicles which conform to the membrane pore diameter without loss of material. This allows the preparation of reasonably homogeneous populations of unilamellar vesicles in the range of 0.1–0.2 μ in diameter. (3) control of liposome permeability: minimizing permeability by increasing the cholesterol content increases dramatically in vivo anti-tumour effects. This has been tested with Ara-C containing vesicles against L1210 leukemia in mice. (4) intracellular delivery of macromolecules: the infectivity of liposome-encapsulated SV40 DNA is enhanced up to 1000-fold over free DNA and is dependent on the vesicle lipid compositions and the incubation conditions. The highest infectivity is achieved with vesicles composed of phosphatidylserine and cholesterol (1:1 mole ratio) in the presence of chloroquine, and in conjunction with a short post-incubation treatment with high concentrations of glycerol. Under these conditions, the infectivity of SV40 DNA (3 x 105 pfu/ g DNA) is comparable or greater than can be obtained using the Ca3(PO4)2techniques for DNA delivery. (5) targeting to specific cells: the covalent attachment of cell specific F(ab’)2 and Fab’ fragments of IgG to the liposome surface induces nearly quantitative uptake of liposomes by target cells. These new procedures increase by 100-fold the uptake of liposomes and their contents by the target cells. Current studies involve monoclonal antibodies against a variety of human and murine antigenic determinants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adrian, G., Huang, L., 1979, Entrapment of proteins in phosphatidylcholine vesicles, Biophys. J. 25: A292.

    Google Scholar 

  • Allen, T.M., McAllister, L., Mausolf, S. and Gyoffry, E., 1981, A study of the interactions of liposomes containing entrapped anti-cancer drugs with the EMT6, S49 and AE1 (transport deficient) cell lines, Biochim. Biophys. Acta, 643: 346.

    Article  PubMed  CAS  Google Scholar 

  • Bangham, A.D., Standish, M.M., Watkins, J.C., 1965, Diffusion of univalent ions across the lamellae of swollen phospholipide, J. Mol. Biol., 13: 238.

    Article  PubMed  CAS  Google Scholar 

  • Bussian, R.W., and Wriston, J.C., 1977, Influence of incorporated cerebrosides on the interactions of liposomes with HeLa cells, Biochim. Biophys. Acta, 471: 336.

    Article  PubMed  CAS  Google Scholar 

  • Deamer, D., Bangham, A.D., 1976, Large volume liposomes by an ether vaporization method, Biochim. Biophys. Acta, 443: 629.

    Article  PubMed  CAS  Google Scholar 

  • Dellaporta, S., Giles, K., Fraley, R., Papahadjopoulos, D., Powell,A., Thomashow, M., Nester, G. and Gordon, M., 1982 ( Submitted for publication).

    Google Scholar 

  • Darszon, A., Vandenberg, C.A., Ellisman, M.H. and Montal, M., 1979, Incorporation of membrane proteins into large single bilayer vesicles; application to rhodopsin, J. Cell. Biol., 81: 446.

    Article  PubMed  CAS  Google Scholar 

  • DeGier, J. Blik, M.C., Van Dijck, P.W.M., Mombers, C., Verkley, A., Van der NeutKok, E.C.M., Van Deenen, L.L.M., 1978, Relations between liposomes and biomembranes, Ann. N.Y. Acad. Sci., 308: 85.

    Article  CAS  Google Scholar 

  • Dunnick, J.K., McDougall, I.R., Aragon, S., Goris, M.L., and Kriss, J.P., 1975, Vesicle interactions with polyamino acids and antibody: in vitro and in vivo studies, Nucl. Med., 16: 483.

    CAS  Google Scholar 

  • Enoch, H.G., Strittmatter, P., 1979, Formation and properties of 1000 AP diameter single bilayer phospholipid vesicles, Proc. Natl. Acad. Sci. USA, 76: 145.

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein, M.C., Weissmann, G., 1978, The introduction of enzymes into cells by means of liposomes, J. Lipid Res. 19: 289.

    PubMed  CAS  Google Scholar 

  • Finkelstein, M.C., Weissmann, G., 1979, Enzyme replacement via liposomes. Variations in lipid composition determine liposomal integrity in biological fluids, Biochim. Biophys. Acta, 587: 202.

    Article  PubMed  CAS  Google Scholar 

  • Fraley, R., Straubinger, R., Rule, G., Springer, L. and Papahadjopoulos, D., 1981, Liposome-mediated delivery of DNA to cells: enhanced efficiency of delivery by changes in lipid composition and incubation conditions, Biochemistry, (in press).

    Google Scholar 

  • Fraley, R., Delaporta, S., Gordon, M., Nester, E. and Papahadjopoulos, D., 1981, Liposome-mediated delivery of TMV RNA into tobacco protoplasts: a sensitive assay for monitoring liposome-protoplast interactions, Proc. Nat. Acad. Sci. USA, (in press).

    Google Scholar 

  • Fraley, R., Subramani, S., Berg, P. and Papahadjopoulos, D., 1980, Introduction of liposomes-encapsulated SV40 DNA into cells: Effect of vesicle composition and incubation conditions, Biol. Chem., 255: 10431.

    CAS  Google Scholar 

  • Goldman, I.D., Lichtenstein, N.S. and Oliveiro, V.T., 1968, Carrier mediated transport of the folic and analogue methotrexate in the L1210 leukemia cell, J. Biol. Chem., 243: 5007.

    PubMed  CAS  Google Scholar 

  • Gregoriadis, G., 1975, Homing of liposomes to target cells, Biochem. Soc. Trans., 3: 613.

    PubMed  CAS  Google Scholar 

  • Gregoriadis, G., 1976, The carrier potential of liposomes in biology and medicine, New Engl. J. Med., 295: 704.

    Article  PubMed  CAS  Google Scholar 

  • Gregoriadis, G. and Davis, C., 1979, Stability of liposomes in vivo and in vitro is promoted by their cholesterol content and the presence of blood cells, Biochem. Biophys. Res. Commun., 89: 1287.

    Article  PubMed  CAS  Google Scholar 

  • Heath, T.D., Fraley, R.T., and Papahadjopoulos, D., 1980, Antibody targeting of liposomes: Specific interaction of vesicles conjugated to anti-erythrocyte F(ab’)2, Science, 210: 539.

    Article  PubMed  CAS  Google Scholar 

  • Heath, T.D., Macher, B.A. and Papahadjopoulos, D., 1981, Covalent attachment of proteins to liposomes via glycosphingolipids, Biochim. Biophys. Acta, 640: 66.

    Article  PubMed  CAS  Google Scholar 

  • Heath, T.D., Robertson, D., Birbeck, M.S.C. and Davies, A.J.S., 1980, The covalent attachment of horseradish peroxidase to the outer surface of liposomes, Biochim. Biophys. Acta, 599: 42.

    Article  PubMed  CAS  Google Scholar 

  • Huang, L., Kennel, S.T., 1979, Binding of immunoglobulin G to phospholipid vesicles by sonication, Biochemistry, 18: 1702.

    Article  PubMed  CAS  Google Scholar 

  • Hunt, C.A., Rustum, Y.M., Mayhew, E. and Papahadjopoulos, D., 1979, Retention of cytosine arabinoside in mouse lung following intravenous administration in liposomes of different size, Drug. Metab. Dispos., 7: 124.

    PubMed  CAS  Google Scholar 

  • Hyman, R., and Stallings, V., 1976, Characterization of a TL variant of a homozygous TL+ mouse lymphoma, Immunogenetics, 3: 75.

    Article  Google Scholar 

  • Juliano, R.L., and Stamp, D., 1976, Lectin-mediated attachment of glycoprotein-bearing liposomes to cells, Nature, 261: 235.

    Article  PubMed  CAS  Google Scholar 

  • Kimelberg, H. Mayhew, E. and Papahadjopoulos, D., 1975, Distribution of liposome entrapped cations in tumor-bearing mice, Life Sciences, 17: 715.

    Article  PubMed  CAS  Google Scholar 

  • Kimelberg, H. Papahadjopoulos, D., 1971, Phospholipid-protein interactions: Membrane permeability correlated with monolayer penetration, Biochim. Biophys. Acta, 233: 805.

    Article  PubMed  CAS  Google Scholar 

  • Kosloski, M.J., Rosen, F., Milholland, D. and Papahadjopoulos, D., 1978, Liposome encapsulation of methotrexate enhances its chemotherapeutic efficacy in solid rodent tumors, Cancer Res. 38: 2848.

    PubMed  CAS  Google Scholar 

  • Lopatin, D. and Voss, E.W., Jr., 1971, Fluorescein hapten and antibody active site probe, Biochemistry, 10: 208.

    Article  PubMed  CAS  Google Scholar 

  • Magee, W.E., 1978, Potentiation of interferon production and stimulation of lymphocytes by polyribonucleotides entrapped in liposomes, Ann. NY Acad. Sci., 308: 308.

    Article  PubMed  CAS  Google Scholar 

  • Martin, F., Hubbell, W. and Papahadjopoulos, D., 1981, Immunospecific Targeting of Liposomes to Cells: A novel and efficient method for covalent attachment of Fab’ fragments via disulfide bonds. Biochemistry, 20: 4229.

    Article  PubMed  CAS  Google Scholar 

  • Martin, F. and Papahadjopoulos, D., 1981, Irreversible coupling of immunoglobulin fragments to preformed vesicles: An improved method for liposome targeting, J. Biol. Chem. (in press).

    Google Scholar 

  • Mason, J.T., Huang, C., 1978, Hydrodynamic analysis of egg phosphatidylcholine vesicles, Ann. NY Acad. Sci., 308: 29.

    Article  PubMed  CAS  Google Scholar 

  • Mayhew, E., Papahadjopoulos, D., Rustum, Y.M., and Dave, C., 1976, Inhibition of tumor cell growth in vitro and in vivo by cytosine arabinoside entrapped within phospholipid vesicles, Cancer Res., 36: 4406.

    PubMed  CAS  Google Scholar 

  • Mayhew, E.G., Szoka, F.C., Rustum, Y. and Papahadjopoulos, D., 1979, Role of cholesterol in enhancing the anti-tumor activity of 1-B-D-Arabinofuranosyl cytosine entrapped in liposomes, Cancer Treat. Rep., 63: 1923.

    PubMed  CAS  Google Scholar 

  • Mertz, J., and Berg, P., 1974, Defective simian virus 40 genomes: Isolation and growth of individual clones, Virology, 62: 112.

    Article  PubMed  CAS  Google Scholar 

  • Oi, V.T., Jones, P.P., Coding, J.W. and Herzenberg, L.A., 1978, Properties of monoclonal antibodies to mouse Ig allotypes, H2 and Ia antigens, Curr. Topics Microbiol. Immun., 81: 115.

    CAS  Google Scholar 

  • Olson, F., Hunt, C.A., Szoka, F.C., Vail, W.J. and Papahadjopoulos,D., 1979, Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes, Biochim. Biophys. Acta, 557: 9.

    Article  PubMed  CAS  Google Scholar 

  • Pagano, R.E., Weinstein, J.N., 1978, Interactions of liposomes with mammalian cells, Ann. Rev. Biophys. Bioeng., 7: 435.

    Article  CAS  Google Scholar 

  • Papahadjopoulos, D., Cowden, M., Kimelberg, H.K., 1973, Effects on phospholipid-protein interactions, membrane permeability and enzymatic activity, Biochim. Biophys. Acta, 330: 8.

    Article  PubMed  CAS  Google Scholar 

  • Papahadjopoulos, D., Jacobson, K., Nir, S. and Isac, T., 1973, Phase transitions in phospholipid vesicles: fluorescence polarization and permeability properties concerning the effect of temperature and cholesterol, Biochim. Biophys. Acta, 311: 330.

    Article  PubMed  CAS  Google Scholar 

  • Papahadjopoulos, D., Mayhew, E., Poste, G., Smith, S. and Vail, W.J., 1974, Incorporation of lipid vesicles by mammalian cells provides a potential method for modifying cell behaviour, Nature, 252: 163.

    Article  PubMed  CAS  Google Scholar 

  • Papahadjopoulos, D., Miller, N., 1967, Phospholipid Model Membranes. 1. Structural characteristics of hydrated liquid crystals. Biochim. Biophys. Acta, 135: 624.

    Article  PubMed  CAS  Google Scholar 

  • Papahadjopoulos, D., Nir, S. and Ohki, S., 1972, Permeability properties of phospholipid membranes: Effect of cholesterol and temperature, Biochim. Biophys. Acta, 266: 561.

    Article  PubMed  CAS  Google Scholar 

  • Papahadjopoulos, D., Vail, W.J., Jacobson, K. and Poste, G., 1975, Cochleate lipid cylinders: Formation by fusion of unilamellar lipid vesicles, Biochim. Biophys. Acta, 394: 483.

    Article  PubMed  CAS  Google Scholar 

  • Papahadjopoulos, D., Watkins, J.C., 1967, Phospholipid model membranes. II. Permeability properties of hydrated liquid crystals, Biochim. Biophys. Acta, 135: 639.

    Article  PubMed  CAS  Google Scholar 

  • Papahadjopoulos, D., Wilson, T., Taber, R., 1980, Liposomes as macromolecular carriers for the introduction of RNA and DNA into cells, in: “Transfer of Cell Constituents into Eukaryotic Cells,” J.E. Cellis, ed., Plenum Press, New York.

    Google Scholar 

  • Poste, G., 1980, Interaction of lipid vesicles (liposomes) with cultured cells and their use as carriers for drugs and macromolecules, in: “Liposomes in Biological Systems,’G. Gregoriadis and A.C. Allison, eds., John Wiley, Chichester, New York.

    Google Scholar 

  • Poste, G., Papahadjopoulos, D. and Vail, W.J., 1976, Lipid vesicles as carriers for introducing biologically active materials into cells, Methods Cell Biol., 14: 33.

    Article  PubMed  CAS  Google Scholar 

  • Scherphof, G., Roerdink, F., Waite, M. and Parks, J., 1978, Transfer in vitro of lecithin from liposomes to high-density lipoproteins, Biochim. Biophys. Acta, 542: 296.

    Article  PubMed  CAS  Google Scholar 

  • Szoka, F.C., Jacobson, K. and Papahadjopoulos, D., 1979, The use of aqueous space markers to determine the mechanism of interaction between phospholipid vesicles and cells, Biochim. Biophys. Acta, 551: 295.

    PubMed  CAS  Google Scholar 

  • Szoka, F., Olson, F., Heath, T.D., Vail, W.J., Mayhew, E. and Papahadjopoulos, D., 1980, Preparation of unilamellar liposomes of intermediate size (0.1–0.4*) by a combination of reverse phase evaporation and extrusion through polycarbonate membranes, Biochim. Biophys. Acta, 601: 559.

    Article  PubMed  CAS  Google Scholar 

  • Szoka, F.C., and Papahadjopoulos, D., 1978, A new procedure for preparation of liposomes with large internal aqueous space and high capture, by Reverse Phase Evaporation (REV), Proc. Natl. Acad. Sci. USA, 75: 4194.

    Article  PubMed  CAS  Google Scholar 

  • Szoka, F.C. and Papahadjopoulos, D., 1980, Comparative properties and methods of preparation of lipid vesicles (liposomes), Ann. Rev. Biophys. Bioengin., 9: 467.

    Article  CAS  Google Scholar 

  • Tall, A.R., Hogan, V., Askinazi, L. and Small, D.M., 1978, Interactions of plasma high density lipoproteins with dimyristoyl lecithin multilamellar liposomes, Biochemistry, 17: 322.

    Article  PubMed  CAS  Google Scholar 

  • Torchilin, V.P., Khaw, B.A., Smirnov, V.N. and Haber, E., 1979, Preservation of antimyosin in antibody activity after covalent coupling to liposomes. Biochem. Biophys. Res. Commun., 89: 1114.

    Article  PubMed  CAS  Google Scholar 

  • Tyrrell, D.A., Heath, T.D., Colley, C.M. and Ryman, B.E., 1976, New aspects of liposomes, Biochim. Biophys. Acta, 457: 259.

    PubMed  CAS  Google Scholar 

  • Weinstein, J.N., Blumenthal, R., Sharrow, S.O. and Henkart, P.A., 1978, Antibody-mediated targeting of liposomes. Binding to lymphocytes does not insure incoroporation of vesicle contents into cells, Biochim. Biophys. Acta, 509: 272.

    Article  PubMed  CAS  Google Scholar 

  • Weinstein, J.N., Magin, R.L., Yatvin, M.B., and Zaharko, D.S., 1979, Liposomes and local hyperthermia: Selective delivery of methotrexate to heated tumors, Science, 204: 188

    Article  PubMed  CAS  Google Scholar 

  • Weissmann, G., Bloomgarden, D., Kaplan, R., Cohen, C., Hoffstein, S., Collins, T., Gottlieb, A. and Nagle, D., 1975, A general method for the introduction of enzymes by means of immunoglobulincoated liposomes into lysosomes of deficient cells, Proc. Natl. Acad. Sci. USA, 72: 88.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, T., Papahadjopoulos, D. and Taber, R., 1977, Biological properties of poliovirus encapsulated in lipid vesicles: Antibody resistance and infection in virus resistant cells, Proc. Natl. Acad. Sci. USA, 74: 3471.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, T., Papahadjopoulos, D. and Taber, R., 1979, The introduction of poliovirus RNA into cells via lipid vesicles (liposomes), Cell, 17: 77.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Papahadjopoulos, D., Heath, T., Martin, F., Fraley, R., Straubinger, R. (1982). Development of Liposomes as an Efficient Carrier System: New Methodology for Cell Targeting and Intracellular Delivery of Drugs and DNA. In: Gregoriadis, G., Senior, J., Trouet, A. (eds) Targeting of Drugs. NATO Advanced Study Institutes Series, vol 47. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4241-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4241-0_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4243-4

  • Online ISBN: 978-1-4684-4241-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics