Skip to main content

Interaction of Liposomes with Cells: Model Studies

  • Chapter
Targeting of Drugs

Part of the book series: NATO Advanced Study Institutes Series ((NSSA,volume 47))

  • 60 Accesses

Abstract

It is well documented to date that the mode of interaction of a given cell type with liposomes is affected by the chemical composition of the latter. Thus, it has been shown that “fluidity”, charge and size of the vesicles are important parameters in determining the mechanism by which liposomes interact with their target cells.1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Poste, The interaction of lipid vesicles (liposomes) with cultured cells and their use as carriers for drugs and macromolecules in: “Liposomes in Biological Systems”, G. Gregoriadis and A.C. Allison, eds., John Wiley, Chichester, New York (1980).

    Google Scholar 

  2. H. Kutchai, Y. Barenholz, T.F. Ross and D.E. Wermer, Developmental changes in plasma membrane fluidity in check embryo heart, Biochim. Biophys. Acta, 436: 101 (1976).

    CAS  Google Scholar 

  3. Y. Kawasaki, N. Wakayama, T. Koike, M. Kawai and T. Amano, A change in membrane microviscosity of mouse neuroblastoma cells in association with morphological differentiation, Biochim. Biophys. Acta, 509: 40 (1978).

    Google Scholar 

  4. A. Ryter and P. Brachet, Cell surface changes during early development stages of Dictyostelium discoideum: A scanning electron microscopic study, Biol. Cellul., 31: 265 (1978)

    Google Scholar 

  5. H.B. Bosmann, Mechanism of cellular drug resistance, Nature, 233: 566 (1971).

    Article  PubMed  CAS  Google Scholar 

  6. D.V. Mohan Das and G. Weeks, Effects of polyunsaturated fatty acids on the growth and differentiation of the cellular slime mould, Dictyostelium discoideum, Exp. Cell. Res. 118: 237 (1979).

    Google Scholar 

  7. A. Kennedy and C. Rice-Evans, A spectrofluorimetric study of the interaction of glycerol mono-oleate with human erythrocyte ghosts, FEBS Letters, 69: 45 (1976).

    Article  PubMed  CAS  Google Scholar 

  8. B.E. Schaeffer and A.S.G. Curtis, Effects on cell adhesion and membrane fluidity of changes in plasmalemmal lipids in mouse L929 cells, J. Cell. Sc. 26: 47 (1977).

    CAS  Google Scholar 

  9. W.F. Loomis, “Dictyostellium discoideum. A developmental system”, Academic Press, New York (1975).

    Google Scholar 

  10. G. Gerisch, Cell aggregation and differentiation in Dictyostelium, Curr. Top. Develop. Biol., 3: 157 (1968).

    Article  CAS  Google Scholar 

  11. J. Fukui and J. Takeuchi, Drug resistant mutants and appearance of heterozygotes in the cellular slime mould Dictyostelium discoideum., J. Gen. Microb. 67: 307 (1971).

    Google Scholar 

  12. K. Muller and G. Gerisch, A specific glycoprotein as the target site of adhesion blocking Fab in.aggregating Dictyostelium cells, Nature, 274: 445 (1978).

    Article  PubMed  CAS  Google Scholar 

  13. R.W. Parish and S. Schmidlin, Synthesis of plasma membrane pro-eins during development of Dictyostelium discoideum. FEBS Letters, 98: 257 (1979).

    Article  Google Scholar 

  14. N.R. Gilkes, K. Laroy and G. Weeks, An analysis of the protein, glycoprotein and monosaccharide composition of Dictyostelium discoideium plasma membranes during development, Biochim. Biophys. Acta, 551: 349 (1979).

    CAS  Google Scholar 

  15. E.J. Henderson, the cyclic adenosine 3’5’-monophosphate receptor of Dictoystelium discoideum, J. Biol. Chem., 250: 4730 (1975).

    PubMed  CAS  Google Scholar 

  16. S. Sierers, H.J. Risse and K. Sekeri-Pataryas, Mol. Cell. Biochem. 20; 103 (1978).

    Google Scholar 

  17. K.L. Lee, Cell electrophoresis of the cellular slime mould Dictyostelium discoideum, J. Cell. Sc. 10: 229 (1972).

    CAS  Google Scholar 

  18. G. Weeks and F.G. Herring, The lipid composition and membrane fluidity of Dictyostelium discoideum plasma membranes at various stages during differentiation. J. Lip. Res. 21: 681 (1980).

    CAS  Google Scholar 

  19. H.B. Long and E.L. Coe, Changes in neutral lipid constituents during differentiation of the cellular slime mould Dictyostelium discoideum, J. Biol. Chem. 249–521 (1974).

    Google Scholar 

  20. J.S. Ellingson, Changes in the phospholipid composition in the differentiating cellular slime mould Dictyostelium discoideum, Biochim. Biophys. Acta 337: 60 (1974).

    CAS  Google Scholar 

  21. C. de Chastellier and A. Ryter, Changes of the cell surface and of the digestive apparatus of Dictyostelium discoideum during the starvation period triggering aggregation. J. Cell Biol. 75: 218 (1977).

    Article  PubMed  Google Scholar 

  22. A. Newton, The chemotherapy of trypanosomiasis and leishmania-+ sis, CIBA Found. Symp. (new series), 20: 285 (1974).

    Google Scholar 

  23. A.M. Fairlamb, F.R. Opperdoes and O. Borst, New approach to screening drugs for activity against African Trypanosomíasis, Nature, 265: 270 (1977).

    Article  PubMed  CAS  Google Scholar 

  24. C.J. Bacchi, H.C. Nathan, S.H. Hutner, P.P. McCann and A. Sjoerdsma, Polyamine metabolism; A potential therapeutic target in Trypanosomes, Science, 210: 332 (1980).

    Article  PubMed  CAS  Google Scholar 

  25. G.A.M. Cross, Antigenic variation in trypanosomes, Proc. R. Soc. London B. 202: 55 (1978).

    Article  CAS  Google Scholar 

  26. J.D. Barry and K. Víckerman, Trypanosoma brucei: Loss of variable antigens during transformation from bloodstream to procyclic forms in vitro, Exp. Parasitol., 48: 313 (1979).

    CAS  Google Scholar 

  27. K. Vikerman, Antigenic variation in trypanosomes, Nature, 273: 613 (1978).

    Article  Google Scholar 

  28. H. Van de Bossche, Chemotherapy of parasitic infections, Nature, 273: 626 (1978).

    Article  PubMed  Google Scholar 

  29. C.D.V. Black, G.J. Watson and R.J. Ward, The use of pentostam liposomes in the chemotherapy of experimental leishmaniasis, Trans. Roy. Soc. Trop. Med. Hyg. 71: 550 (1977).

    Article  PubMed  CAS  Google Scholar 

  30. R.R.C. New, M.L. Chance, S.C. Thomas and W. Peters, Antileishmanial activity of antimonials entrapped in liposomes, Nature, 272: 55 (1978).

    Article  PubMed  CAS  Google Scholar 

  31. C.R. Alving, E.A. Steck, W.L. Chapman Jr., V.B. Waits, L.D. Hendricks, G.M. Swartz Jr., and W.L. Hanson, Therapy of leishmaniasis: Superior effecacies of liposome-encapsulated drugs, Proc. Nat. Acad. Sci. USA, 75: 2959 (1978).

    Article  PubMed  CAS  Google Scholar 

  32. K. Vickerman, The ultrastructure of pathogenic flagellates, CIBA Found. Symp. (new series), 20: 171 (1974).

    Google Scholar 

  33. R.B. McGhee and W.B. Cosgrove, Biology and Physiology of the lower Trypanosomatidae, Microbiol. Rev. 44: 140 (1980).

    CAS  Google Scholar 

  34. G.W. Kidder and B.N. Dutta, The growth and nutrition of Crithidia fasciculata, J. Gen. Microbiol., 18: 621 (1958).

    PubMed  CAS  Google Scholar 

  35. K.M. Tamburro and S.H. Hunter, Carbohydrate-free media for Crithidia, J. Protozool, 18: 667 (1971).

    PubMed  CAS  Google Scholar 

  36. N.S. Constantsas, G.M. Levis and C. Vakirtzi-Lemonias, Crithidia fasciculata tyrosine transaminase, 1. Development, characterization and differentiation from alanine transaminase, Biochim. Biophys. Acta., 230: 137 (1971).

    CAS  Google Scholar 

  37. F.B. St. C. Palmer, Lipids of Crithidia fasciculata, The occurrence and turnover of phosphoinosides, Biochim. Biophys. Acta., 316: 396 (1973).

    Google Scholar 

  38. P.A.J. Gorin, J.O. Previato, L. Mendosa-Previato and L.R. Travassos, Structure of the D-mannan and D-arabino- galactan in Crithidia fasciculata, Changes in composition with age of culture, J.’Protozool, 26: 473 (1979).

    CAS  Google Scholar 

  39. N. Frantzis and C. Vakirtzi-Lemonias, Concanavalin A receptors of the surface membrane of Crithidia fasciculata. Biochem. Soc. Trans., 9: 135 (1981).

    CAS  Google Scholar 

  40. K.B. Easterbrook, The ultrastructure of Crithidia fasciculata, A freeze-etching study, Canad. J. Microbiol. 17: 277 (1971)

    CAS  Google Scholar 

  41. B.E. Brooker, The cell coat of Crithidia fasciculata, Parasitology 72: 259 (1976).

    Article  PubMed  CAS  Google Scholar 

  42. C. Vakirtzi-Lemonias, C.C. Karahalios and G.M. Levis, Fatty acid oxidation by Crithidia fasciculata, Can. J. Biochem., 50: 501 (1972).

    CAS  Google Scholar 

  43. C.J. Bacchi, C. Lambros, B. Goldberg, S.G. Hutner and G.D.F. de Carvalho, Susceptibility of an insect Leptomonas and Crithidia fasciculata to several established antitrypanosomatid agents, Antimicrob. AA. Chemother. 6: 785 (1974).

    CAS  Google Scholar 

  44. M. Midgley, The transport of -aminobutyrate into Crithidia fasciculata, Biochem. J. 174: 191 (1978).

    PubMed  CAS  Google Scholar 

  45. V.C. Dewey, G.W. Kidder and L.L. Nolan, Mechanism of inhibition of Crithidia fasciculata by adenosine and adenosine analogs, Biochem. Pharmacol., 27: 1479 (1978).

    CAS  Google Scholar 

  46. M. Midgley and M.C. Stephenson, Measurement of membrane potential component of the transmembrane proton electrochemical gradient in Crithidia fasciculata, Biochem. Soc. Trans

    Google Scholar 

  47. C. Vakirtzi-Lemonias and G. Gregoriadis, Uptake of liposome entrapped agents by the trypanosome Crithidia fasciculata, Biochem. Soc. Trans., 6: 1241 (1978).

    CAS  Google Scholar 

  48. J. Gruenberg, D. Coral, A.L. Knupfer and J. Deshusses, Interactions of liposomes with Trypanosoma brucei plasma membranes, Biochem. Biophys. Res. Commun., 88: 1173 (1979).

    Article  PubMed  CAS  Google Scholar 

  49. P. Chadwick, Resistance of Pseudomonas aeru$inosa to gentamicin, Can. Med. Ass. Journal, 109: 585 (1973).

    CAS  Google Scholar 

  50. N.J. Legakis, J. Tselentis, K.J. Courtis, J. Papavassiliou, Cross resistance of clinical isolates of Pseudomonas aeruginosa to five aminoglycosides, J. Antimicrob. Chem. 5: 487 (1979).

    Article  CAS  Google Scholar 

  51. R. Benviste and J. Davies, Mechanisms of antibiotic resistance in bacteria, Ann. Rev. Biochem. 42: 471 (1973)

    Article  Google Scholar 

  52. T.R. Korfhagen, J.C. Lopez and J.A. Ferrel, Pseudomonas aeruginosa R factors determining gentamicin plus carbenicillin resistance from patients with urinary tract colonization. Antìmicr. Agents Chemoth., 7: 64 (1975).

    CAS  Google Scholar 

  53. J.W. Payne and C. Gilvarg, Size restriction on peptide utilization in E. coli, J. Biol. Chem. 243: 6291 (1968).

    CAS  Google Scholar 

  54. P.E. Lianous, H.P. Bassaris, G.K. Kaikos, T.A. Katsorchis and N.J. Legakis, Increased adherence to human epithelial cells of resistant Pseudomonas aeruginosa strains, J. Infect. 2: 354 (1980).

    Article  Google Scholar 

  55. N.C. Jones and M.J. Osborn, Interaction of Salmonella tyRhimurium with phospholipid vesicles, J. Biol. Chem. 252: 7398 (1977).

    PubMed  CAS  Google Scholar 

  56. N.C. Jones and M.J. Osborn, Translocation of phospholipids between the outer and inner membranes of Salmonella typhimurium, J. Biol. Chem. 252: 7405 (1977).

    PubMed  CAS  Google Scholar 

  57. H. Nikaido and T. Nakae, The outer membrane of gram negative bacteria, Adv. Microb. Physiol., 20: 164 (1979).

    Google Scholar 

  58. T.I. Nicas and R.E.W. Hancock, Outer membrane protein Hi of Pseudomonas aeruginosa: involvement in adaptive and mutational resistance to ethylenediaminetetracetate, Polymyxin B, and gentamicin, J. Bacter., 143: 872 (1980).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Vakirtzi-Lemonias, C., Sekeris-Pataryas, K. (1982). Interaction of Liposomes with Cells: Model Studies. In: Gregoriadis, G., Senior, J., Trouet, A. (eds) Targeting of Drugs. NATO Advanced Study Institutes Series, vol 47. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4241-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4241-0_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4243-4

  • Online ISBN: 978-1-4684-4241-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics