Skip to main content

Stimulation of Host Response Against Metastatic Tumors by Liposome-Encapsulated Immunomodulators

  • Chapter

Part of the book series: NATO Advanced Study Institutes Series ((NSSA,volume 47))

Abstract

The metastatic spread of malignant tumors to form metastases at other sites in the body remains the principal cause of failure in the treatment of neoplastic disease1. Several factors are responsible for this unfortunate situation. First, metastases are frequently too small to be detected at the time the primary tumor is removed. Second, widespread dissemination of metastases often takes place before symptoms of metastatic disease occur. Third, the anatomic location of many metastatic lesions renders them inaccessible to surgical removal and/or limits the effective dose of therapeutic agents that reach metastases. The final, and most formidable, problem concerns emergence of metastatic lesions that are resistant to conventional therapy. Recent work suggests that metastases arise from non-random spread of specialized subpopulations of cells within the primary tumor and that the responsiveness of these metastatic subpopulations to therapy may not only differ from that of non-metastatic tumor cells in the primary tumor but may also vary significantly between the tumor cell subpopulations present in individual metastases within the same patient (review, 2). The depressing implication of this marked heterogeneity in the response of malignant cells to chemotherapy and other therapeutic modalities is that the only successful approach to the therapy of metastases will be one that circumvents the problem of cellular diversity between tumor cells in primary and metastatic lesions, and between different metastatic foci.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Poste and I.J. Fidler, The pathogenesis of cancer metastases, Nature, 283: 139 (1980).

    Article  PubMed  CAS  Google Scholar 

  2. I.J. Fidler and M.L. Kripke, Biological variability within murine neoplasms, Antibiot. Chemother. 28: 123 (1980).

    Google Scholar 

  3. I.J. Fidler, Recognition and destruction of target cells by tumoricidal macrophages, Isr. J. Med. Sci. 14: 177 (1978).

    PubMed  CAS  Google Scholar 

  4. R.S. Kerbel, Implications of immunological heterogeneity of tumours, Nature 280: 358 (1979).

    Article  PubMed  CAS  Google Scholar 

  5. E. Den Otter, F.J. Dullens Hub, H. Van Lovern and E. Pels, Antitumor effects of macrophages injected into animals: a review, in: “The Macrophage and Cancer,” K. James, B. McBride and A. Stuart, eds., Econoprint, Edinburgh, (1977).

    Google Scholar 

  6. I.J. Fidler, Inhibition of pulmonary metastasis by intravenous injection of specifically activated macrophages, Cancer Res. 34: 1074 (1977).

    Google Scholar 

  7. L.A. Liotta, C. Gattozzi, J. Kleinerman and G. Saidel, Reduction of tumor-cell entry into vessels by BCG-activated macrophages, Brit. J. Cancer 36: 639 (1977).

    Article  PubMed  CAS  Google Scholar 

  8. I.J. Fidler and G. Poste, Macrophage destruction of micro-metastases, in: “Manual of Macrophage Methodology,” H.B. Herscowitz, H.J. Holden, J.A. Bellanti and A. Ghaffar, eds., Marcel Dekker, New York (1981).

    Google Scholar 

  9. I.J. Fidler, Z. Barnes, W.E. Fogler, R. Kirsh, P. Bugelski and G. Poste, Evidence for the involvement of macrophages in the eradication of established metastases following intravenous injection of liposomes containing macrophage activators, Cancer Res. - submitted.

    Google Scholar 

  10. S.W. Russell, G.Y. Gillespie and J.L. Pace, Evidence for mononuclear phagocytes in solid neoplasms and appraisal of the nonspecific cytotoxic capabilities, in: “In Situ Expression of Tumor Immunity,” I. P. Witz and M.G. Hanna, eds., Plenum, New York (1980).

    Google Scholar 

  11. A.C. Allison, Mode of action of immunological adjuvants, J. Reticuloendothel. Soc. 26: 619 (1979).

    PubMed  CAS  Google Scholar 

  12. I.J. Fidler and A. Raz, The induction of tumoricidal capacities in mouse and rat macrophages by lymphokines, in: “Lymphokines,” E. Pick, ed., Vol. 3, Academic Press, New York, (1981).

    Google Scholar 

  13. B.W. Papermaster, O.A. Holterman, E. Klein, I. Djerassi, D. Rosner, T. Dao and J.J. Costanzi, Preliminary observations on tumor regressions induced by local administration of a lymphoid-cell culture supernatant fraction in patients with cutaneous metastatic lesions, Clin. Immunol. Immunopathol. 5: 31 (1976).

    Article  PubMed  CAS  Google Scholar 

  14. S.B. Slavin, J.S. Youngner, J. Nishio and R. Neta, Brief communication: tumor suppression by a lymphokine released into the circulation of mice with delayed hypersensitivity, J. Nat. Cancer Inst. 55: 1233 (1975).

    Google Scholar 

  15. N.E. Adelman, M.G. Hammond, S. Cohen and H.F. Dvorak, Lymphokines as inflammatory mediators, in: “Biology of the Lymphokines,” S. Cohen, E. Pick and J.J. Oppenheim, eds., Academic Press, New York (1979).

    Google Scholar 

  16. G. Poste and R. Kirsh, Rapid decay of tumoricidal activity and loss of responsiveness to lymphokines in inflammatory macrophages, Cancer Res. 39: 2582 (1979).

    PubMed  CAS  Google Scholar 

  17. L. Chedid, F. Audibert and A.G. Johnson, Biological activities of muramyl dipeptide, a synthetic glycopeptide analogous to bacterial immunoregulating agents, Progr. Allergy 25: 63 (1978).

    CAS  Google Scholar 

  18. G. Gregoriadis and A.C. Allison, eds., in: “Liposomes in Biology and Medicine,” Wiley Interscience, New York (1980).

    Google Scholar 

  19. T.D. Heath, R.T. Fraley and D. Papahadjopoulos, Antibody targeting of liposomes - cell specificity obtained by conjugation of F(AB)2 to vesicle surface, Science, 210: 539 (1980).

    Article  PubMed  CAS  Google Scholar 

  20. L.D. Leserman, J.N. Weinstein, R. Blumenthal and W.D. Terry, Receptor mediated endocytosis of antibody-opsonized liposomes by tumor cells, Proc. Nat. Acad. Sci. USA, 77: 4089 (1980).

    Article  PubMed  CAS  Google Scholar 

  21. G. Gregoriadis and D. Neerunjun, Homing of liposomes to target cells, Biochem. Biophys, Res. Commun. 65: 537 (1975).

    Article  CAS  Google Scholar 

  22. G. Poste, R. Kirsh and I.J. Fidler, Cell surface receptors for lymphokines. I. The possible role of glycolipids as receptors for macrophage migration inhibitory factor (MIF) and macrophage activation factor (MAF), Cell Innnunol. 44: 71 (1979).

    Article  CAS  Google Scholar 

  23. G. Poste, R. Kirsh, W.E. Fogler and I.J. Fidler, Activation of tumoricidal properties in mouse macrophages by lymphokines encapsulated in liposomes, Cancer Res. 39: 881 (1979).

    PubMed  CAS  Google Scholar 

  24. I.J. Fidler, S. Sone, W.E. Fogler and Z. Barnes, Eradication of spontaneous metastases and activation of alveolar macrophages by intravenous injection of liposomes containing muramyl dipeptide, Proc. Nat. Acad. Sci. USA, 78: 1680 (1981).

    Article  PubMed  CAS  Google Scholar 

  25. I.J. Fidler, A. Raz, W.E. Fogler, R. Kirsh, P. Bugelski and G. Poste, Design of liposomes to improve delivery of macrophage-augmenting agents to alveolar macrophages, Cancer Res. 40: 4460 (1980).

    PubMed  CAS  Google Scholar 

  26. I.J. Fidler, I.R. Hart, A. Raz, W.E. Fogler, R. Kirsh and G. Poste, Activation of tumoricidal properties in macrophages by liposome-encapsulated lymphokines: in vivo studies, in: “Liposomes and Immunobiology,” B.H. Tom and H. Six, eds., Elsevier, New York (1980).

    Google Scholar 

  27. S. Sone, G. Poste and I.J. Fidler, Rat alveolar macrophages are susceptible to activation by free and liposome-encapsulated lymphokines, J. Immunol. 124: 2197 (1980).

    PubMed  CAS  Google Scholar 

  28. G. Poste, C. Bucana, A. Raz, R. Kirsh, P. Bugelski and I.J. Fidler, The behaviour of intravenously inoculated liposomes in the microcirculation: implications for liposome targeting and drug delivery, Cancer Res. - submitted.

    Google Scholar 

  29. G.P. Velo and W.G. Spector, The origin and turnover of alveolar macrophages in experimental pneumonia, J. Pathol. 109: 7 (1973).

    Article  PubMed  CAS  Google Scholar 

  30. E.D. Thomas, R.E. Ramberg, G.E. Sale, R.S. Sparkes and D.W. Golde, Direct evidence for a bone marrow origin of the alveolar macrophage in man, Science, 192: 1016 (1976).

    Article  PubMed  CAS  Google Scholar 

  31. K.J. Johnson, P.A. Ward, G. Striker and R. Kunkel, A study of the origin of pulmonary macrophages using the Chediak-Higashi marker, Am. J. Pathol. 101: 365 (1980).

    PubMed  CAS  Google Scholar 

  32. A. Blusse van Ould Alblas and R. Van Furth, Origin, kinetics and characteristics of pulmonary macrophages in the normal steady state, J. Exp. Med. 149: 1504 (1979).

    Article  Google Scholar 

  33. I.R. Hart, Selection and characterization of an invasive variant of the B16 melanoma, Am. J. Pathol. 97: 587 (1979).

    PubMed  CAS  Google Scholar 

  34. I.J. Fidler, Therapy of spontaneous metastases by intravenous injection of liposomes containing lymphokines, Science 208: 1469 (1980).

    Article  PubMed  CAS  Google Scholar 

  35. M. Parant, Biological properties of a new synthetic adjuvant, muramyl dipeptide (MDP), Semin. Immunopathol. 2: 101 (1979).

    CAS  Google Scholar 

  36. D.P. Griswold, Jr., Consideration of subcutaneously implanted B16 melanoma as a screening model for potential anticancer agents, Cancer Chemotherap. Rep. 3: 315 (1972).

    Google Scholar 

  37. M. Aalto, M. Potila and E. Kulonen, The effect of silica-treated macrophages on the synthesis of collagen and other proteins in vitro, Exp. Cell Res. 97: 193 (1976).

    Article  PubMed  CAS  Google Scholar 

  38. C.F. Brosnan, M.B. Bornstein and B.R. Bloom, The effects of macrophage depletion on the clinical and pathological expression of experimental allergic encephalomyelitis, J. Immunol. 126: 614 (1981).

    PubMed  CAS  Google Scholar 

  39. P.J. Cantanzaro, H.J. Schwartz and R.C. Graham, Jr., Spectrum and possible mechanism of carrageenan cytotoxicity, Am. J. Pathol. 64: 387 (1971).

    Google Scholar 

  40. D.G. Hopper, M.V. Pimm and R.W. Baldwin, Silica abrogation of mycobacterial adjuvant contact suppression of tumor growth in rats and athymic mice, Cancer Immunol. Immunother. 1: 143 (1976).

    Article  Google Scholar 

  41. R. Keller, Promotion of tumor growth in vivo by anti-macrophage agents, J. Nat. Cancer Inst. 57: 1355 (1976).

    PubMed  CAS  Google Scholar 

  42. M.H. Levy and E.F. Wheelock, Effects of intravenous silica on immune and non-immune functions of the murine host, J. Immunol. 115: 41 (1975).

    PubMed  CAS  Google Scholar 

  43. A.W. Thomson, N. Cruickshank and E.F. Fowler, Fc receptor-bearing and phagocytic cells in syngeneic tumors of corynebacterium-parvum treated and carrageenan treated mice, Brit. J. Cancer 39: 598 (1979).

    Article  PubMed  CAS  Google Scholar 

  44. S.D. Miller and A. Zarkower, Alterations of murine immunological responses after silica dust inhalation, J. Immunol. 113: 1533 (1974).

    PubMed  CAS  Google Scholar 

  45. E. Lotzova, C. parvum-mediated suppression of the phenomenon of natural killing and its analysis, in: “Natural Cell-Mediated Immunity Against Tumors,” R.B. Herberman, ed., Plenum, New York (1980).

    Google Scholar 

  46. G. Poste, unpublished observations.

    Google Scholar 

  47. I.J. Fidler, J. Immunol. - in press (1981).

    Google Scholar 

  48. S. Sone and I.J. Fidler, In vitro activation of tumoricidal properties in rat alveolar macrophages by synthetic muramyl dipeptide encapsulated in liposomes, Cell Immunol. 57: 42 (1981).

    Article  PubMed  CAS  Google Scholar 

  49. I.R. Hart, W.E. Fogler, G. Poste and I.J. Fidler, Toxicity studies of liposome-encapsulated imetunomodulators administered intravenously to dogs and mice, Cancer Immunol Immunother. 10: 157 (1981).

    Article  CAS  Google Scholar 

  50. S.A. Eccles, Macrophages and cancer, in: “Immunological Aspects of Cancer,” J.E. Castro, ed., Univ. Park Press, Baltimore (1978).

    Google Scholar 

  51. M.J. Berendt and R.J. North, T-cell mediated suppression of anti-tumor immunity. An explanation for progressive growth of an immunogenic tumor, J. Exp. Med. 151: 69 (1980).

    Article  PubMed  CAS  Google Scholar 

  52. L.P. Ruco and M.S. Meltzer, Macrophage activation for tumor cytotoxicity: increased lymphokine responsiveness of peritoneal macrophages during acute inflammation, J. Immunol. 120: 1054 (1978).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Poste, G., Bucana, C., Fidler, I.J. (1982). Stimulation of Host Response Against Metastatic Tumors by Liposome-Encapsulated Immunomodulators. In: Gregoriadis, G., Senior, J., Trouet, A. (eds) Targeting of Drugs. NATO Advanced Study Institutes Series, vol 47. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4241-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4241-0_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4243-4

  • Online ISBN: 978-1-4684-4241-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics