Skip to main content

Perturbation to the Atmospheric Radiation Field from Carbonaceous Aerosols

  • Chapter

Abstract

Carbonaceous aerosols from combustion processes enter the atmosphere in the form of submicron particles. Subsequent processes involving coagulation and wet and dry removal give rise to a microparticle size spectrum whose shape continually evolves as the aerosol-laden air mass ages and disperses. After a transport time of ~10–20 days, an asymptotic size distribution function seems to be approached, usually consisting of a single particle size mode with about 80% of the particle mass contained between particle radii limits of 0.06 to 0.3 µm; particles smaller than this range have been removed by coagulation or molecular diffusion processes while those larger have been removed by sedimentation, impaction and nucleation. It is found, empirically, that the carbonaceous aerosol at distant “background” locations, like the Arctic, are mixed with a sulfate aerosol which derives mainly from the nucleation of natural and anthropogenic trace sulfur-bearing gases. In the Arctic, the carbonaceous aerosols constitute 10–30% of the aerosol mass, while in the southern polar regions the percentage is much smaller, presumably due to the remoteness of anthropogenic and natural combustion sources.

The quantity of particles in the air column above the northern polar regions and their size is such that, apparently, significant interactions can occur between the particles and visible band radiative fluxes passing through the atmosphere. This raises the possibility that interactions with the radiation field may influence terrestrial climate by introducing heating into the earth-atmosphere system. It also introduces an opportunity to employ passive ground-based measurements of certain atmospheric optical parameters to deduce characteristics of the aerosols. The theory of determining aerosol parameters is described briefly with the aid of a two-stream approximation to the equation of radiative transfer and its use is illustrated for optical data taken near Fairbanks during an episode of Arctic-derived haze. It has been deduced that the albedoof single scattering for Arctic haze is lower than had been expected—about 0.6 to 0.8—and that the optical thickness of the arctic aerosol during the spring months can be as large as 0.25 (at 500 nm wavelength). The cause of the arctic haze phenomenon seems to be associated with anthropogenic emissions at the mid-latitudes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Rosen, “Determination of soot in the arctic haze near Barrow, Alaska,” Presented at 2nd symposium on Arctic Air Chemistry, University of Rhode Island, 1980.

    Google Scholar 

  2. K. A. Rahn and G. E. Shaw, (submitted for publication).

    Google Scholar 

  3. G. Shaw and K. Stamnes, Ann. NYAcad. Sci., Vol. 338 (1980), p. 533.

    Article  Google Scholar 

  4. M. A. Atwater, Science, Vol. 170 (1970), p. 64.

    Article  CAS  Google Scholar 

  5. R. Charlson and M. Pilat, J. Appl. Meteor., Vol. 8 (1960), p. 1001.

    Article  Google Scholar 

  6. P. Chylek and J. A. Coakley, Jr., Science, Vol. 183 (1974), p. 75.

    Article  Google Scholar 

  7. P. Halpern and K. L. Coulson, J. Appl. Meteor., Vol. 15 (1976), p. 464.

    Article  Google Scholar 

  8. J. M. Mitchell, Jr., J. Appl. Meteor., Vol. 16 (1971), P.703.

    Article  Google Scholar 

  9. S.I. Rasool and S. H. Schneider, Science, Vol. 173 (1971), p. 138.

    Article  CAS  Google Scholar 

  10. J. M. Mitchell, Jr., J. Atmos. Terr. Phys., (1956), p. 195.

    Google Scholar 

  11. G. Shaw, “An eddy diffusion model of Arctic Haze,” Presented at the 2nd symposium on Arctic Air Chemistry, University of Rhode Island, 1980.

    Google Scholar 

  12. E. G. Flowers, R. A. McCormick, K. R. Kurfis, J. Appl. Meteor., Vol. 8 (1969), p. 955.

    Article  Google Scholar 

  13. K. A. Rahn and R. J. McCaffrey, Ann. NYAcad. Sci., Vol. 338 (1980), p. 486.

    Article  CAS  Google Scholar 

  14. J. M. Daisey, R. J. McCaffrey and R. A. Gallagher, “Particulate organic matter in the Arctic aerosol,” Presented at the 2nd symposium on Arctic Air Chemistry, University of Rhode Island, 1980.

    Google Scholar 

  15. E. Patterson and K. A. Rahn, “Coefficients of absorption of visible radiation by the Barrow, aerosol and their seasonal variations,” Presented at 2nd symposium on Arctic Air Chemistry, University of Rhode Island, 1980.

    Google Scholar 

  16. C. J. Weschler, `Identification of selected organics inArctic aerosols,“ Presented at the 2nd symposium on Arctic Air Chemistry, University of Rhode Island, 1980.

    Google Scholar 

  17. K. A. Rahn, “The Eurasian sources of arctic aerosol,” Norwegian Institute for Air Research Report, Lillestrom, Norway, 1979.

    Google Scholar 

  18. S. K. Kao, “Basic Characteristics of global scale diffusion in the troposphere,” In: Turbulent Diffusion in Environmental Pollution, F. N. Frenkiel, E.D., eds., Academic Press, New York, (1974), pp. 15–32.

    Google Scholar 

  19. G. Czeplak and C. Junge, “Studies of inter-hemispheric exchange in the troposphere by a diffusion model,” in: Turbulent Diffusion in Environmental Pollution, H.E. Landsberg and J. Van Mieghem, E.D. eds., Advances in Geophysics Series, Academic Press, New York, (1974), pp. 57–72.

    Google Scholar 

  20. E. K. Bigg, J. Appl. Meteor, Vol. 19 (1980), p. 521.

    Article  Google Scholar 

  21. G. E. Shaw, J. A. Reagan and B. M. Herman, J. Appl. Meteor., Vol. 12 (1973), p. 374.

    Article  Google Scholar 

  22. S. G. Jennings, R. G. Pinnick, J. B. Gillespie, Appl. Opt., Vol. 18 (1979), p. 1368.

    Article  CAS  Google Scholar 

  23. S. Chandrasekhar, Radiative Transfer, Dover Publications, New York, (1960), p. 393.

    Google Scholar 

  24. J. Coakley and P. Chylek, J. Atmos. Sci., Vol. 32 (1975), p. 409.

    Article  Google Scholar 

  25. D. Deirmendjian, Rev. Geophys. & Spa. Phys., Vol. 18 (1980), p. 541.

    Google Scholar 

  26. W. Wiscombe and G. Grams, J. Atmos. Sci., Vol. 33 (1976), p. 2440.

    Article  Google Scholar 

  27. L. G. Henyev and J. L. Greenstein, Astrophys. J., Vol. 93 (1941), p. 70.

    Article  Google Scholar 

  28. J. Hansen, J. Atmos. Sci., Vol. 26 (1969), p. 478.

    Article  Google Scholar 

  29. B. Herman, R. S. Browning and J. Delusi, J. Atmos. Sci., Vol. 32 (1975), p. 918.

    Article  Google Scholar 

  30. S. Twomey, Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements, Elsevier Scientific Publishing Co., New York, (1977), p. 237.

    Google Scholar 

  31. G. E. Shaw, Applied Optics, Vol. 18 (1979), p. 988.

    Article  CAS  Google Scholar 

  32. P. T. Walters, Appl. Optics, Vol. 19 (1980), p. 2353.

    Article  CAS  Google Scholar 

  33. G. E. Shaw and C. S. Deehr, J. Appl. Meteor., Vol. 14 (1975), p. 1203.

    Article  Google Scholar 

  34. S. G. Warren and W. J. Wiscombe, J. Atmos. Sci. (Submitted for publication).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Shaw, G.E. (1982). Perturbation to the Atmospheric Radiation Field from Carbonaceous Aerosols. In: Wolff, G.T., Klimisch, R.L. (eds) Particulate Carbon. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4154-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4154-3_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4156-7

  • Online ISBN: 978-1-4684-4154-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics