Skip to main content

The Alcohol Dehydrogenase Genes of the Yeast, Saccharomyces Cerevisiae: Isolation, Structure, and Regulation

  • Chapter
Book cover Genetic Engineering of Microorganisms for Chemicals

Part of the book series: Basic Life Sciences ((BLSC))

Abstract

Alcohol dehydrogenase (E.C. 1.1.1.1. ADH) catalyzes the inter-conversion of an alcohol and an aldehyde with NAD+ as a cofactor. In most higher organisms that have been studied, several different isozymes of ADH are present. The main function of these isozymes is presumed to be catabolic, to degrade various alcohols or sterols. This presumption is based primarily on the substrate preferences of the various isozymes and the absence of a fermentative pathway for alcohol production during glycolysis. In many organisms there is a distinctive tissue specificity in the distribution of different ADH isozymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennetzen, J.L. (1979). Ph.D. Thesis. University of Washington.

    Google Scholar 

  2. Berk, A.J. and P.A. Sharp (1978). Spliced early mRNAs of Simian Virus 40. Proc. Nat. Acad. Sci. USA. 75: 1274–1278.

    Article  Google Scholar 

  3. Cameron, J.R., E.Y. Loh, and R.W. Davis (1979). Evidence for transposition of dispersed repetitive DNA families in yeast. Cell, 16: 739–751.

    Article  Google Scholar 

  4. Ciriacy, M. (1975a). Genetics of alcohol dehydrogenase in Saccharomyces cerevisiae. I. Isolation and genetic analysis of adh mutants. Mutation Research, 29: 315–332.

    Article  Google Scholar 

  5. Ciriacy, M. (1975b). Genetics of alcohol dehydrogenase in Saccharomyces cerevisiae. II. Two loci controlling synthesis of the glucose-repressible ADHII. Mol. Gen. Genet., 138: 157–164.

    Article  Google Scholar 

  6. Ciriacy, M. (1979). Isolation and characterization of further cis-and trans-acting regulatory elements involved in the synthesis of glucose-repressible alcohol dehydrogenase (ADHII). Mol. Gen. Genet., 176: 427–431.

    Article  Google Scholar 

  7. Ciriacy, M. and V.M. Williamson (1981). Analysis of mutations affecting Ty-mediated gene mediated gene expression in Saccharomyces cerevisiae. Mol. Gen. Genet.

    Google Scholar 

  8. Clark, L. and J. Carbon (1980). Isolation of a yeast centromere and constructure of functional small circular chromosomes.

    Google Scholar 

  9. Denis, C., E.T. Young, and M. Ciriacy (1981). A positive regulatory gene is required for accumulation of functional mRNA for the glucose-repressible alcohol dehydrogenase from Saccharomyces cerevisiae. J. Mol. Biol.

    Google Scholar 

  10. Errede, B., T.S. Cardillo, F. Sherman, E. Dubois, J. Deschamps, and J.M. Wiame (1980). Mating signals control expression of mutations resulting from insertion of a transposable repetitive element adjacent to diverse yeast genes. Cell, 22: 427–436

    Article  Google Scholar 

  11. Farabaugh, P.J. and G.R. Fink (1980). Insertion of the Eukaryotic transposable element Tyl creates a 5-base pair duplication, Nature, 286: 352–356.

    Article  Google Scholar 

  12. Gafner, J. and P. Philippsen (1980). The yeast transposon Tyl generates duplications of target DNA on insertion. Nature, 286: 414–418.

    Article  Google Scholar 

  13. Garel, A., M. Zolan, and R. Axel (1977). Genes transcribed at diverse rates have a similar conformation in chromatin. Proc. Nat. Acad. Sci., USA, 74: 4867–4871.

    Article  Google Scholar 

  14. Holland, M.J., J.L. Holland, G.P. Thill, and K.A. Jackson (1981). The primary structure of two yeast enolase genes. J. Biol. Chem., 256: 1385–1395.

    Google Scholar 

  15. Jornvall, H. (1977). The primary structure of yeast alcohol dehydrogenase. Eur. J. Biochem., 72: 425–442.

    Article  Google Scholar 

  16. Lohr, D. and L. Hereford (1979). Yeast chromatin is uniformly digested by DNase I. Proc. Nat. Acad. Sci., USA, 76: 4285–4288.

    Article  Google Scholar 

  17. Maxam, A.M. and W. Gilbert (1977) PNAS, 74: 550–554.

    Article  Google Scholar 

  18. Montomery, D.L., U.W. Leung, M. Smith, P. Shalet, G. Faye, and B.O. Hall (1980). Isolation and sequence of the gene for iso-2-cytochrome c in Saccharomyces cerivisiae. Proc. Nat. Acad. Sci., USA, 77: 541–545.

    Article  Google Scholar 

  19. Nasmyth, K.A. and S.I. Reed (1980). Isolation of genes by complementation in yeast: molecular cloning of a cell-cycle gene. Nat. Acad. Sci., USA. 77: 2119–2123.

    Article  Google Scholar 

  20. Struhyl, K. D.T. Stinchcomb, S. Scherer, and R.W. Davis (1979). High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc. Nat. Acad. Sci., USA, 76: 1035–1039.

    Article  Google Scholar 

  21. Weintraub, H. and M. Groudine (1976). Chromosomal subunits in active genes have an altered conformation. Science, 193: 848–855.

    Article  Google Scholar 

  22. Williamson, V.M., J. Bennetzen, E.T. Young, K. Nasmyth, and B.D. Hall (1980). Isolation of the structural gene for alcohol dehydrogenase by genetic complementation in yeast. Nature, 283: 214–216.

    Article  Google Scholar 

  23. Williamson, V.M., E.T. Young, and M. Ciriacy (1981). Transposable elements associated with constitutive expression of yeast alcohol dehydrogenase II. Cell, 23: 605–614.

    Article  Google Scholar 

  24. Wills, C. and J. Phelps (1975). A technique for the isolation of yeast alcohol dehydrogenase mutants with altered substrate specificity. Arch. Biochem. Biophys., 167: 627–637.

    Article  Google Scholar 

  25. Wills, C. and H. Jornvall (1979). The two major isozymes of yeast alcohol dehydrogenase. Eur. J. Biochem., 99: 323–331.

    Article  Google Scholar 

  26. Wu, C. (1980). The 5’ ends of drosophila heat shock genes in chromatin are hypersensitive to DNase I. Nature, 286: 854–860.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Young, T. et al. (1982). The Alcohol Dehydrogenase Genes of the Yeast, Saccharomyces Cerevisiae: Isolation, Structure, and Regulation. In: Hollaender, A., DeMoss, R.D., Kaplan, S., Konisky, J., Savage, D., Wolfe, R.S. (eds) Genetic Engineering of Microorganisms for Chemicals. Basic Life Sciences. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4142-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4142-0_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4144-4

  • Online ISBN: 978-1-4684-4142-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics