Skip to main content

Genetic Alteration of Zymomonas Mobilis for Ethanol Production

  • Chapter
Genetic Engineering of Microorganisms for Chemicals

Part of the book series: Basic Life Sciences ((BLSC))

Abstract

Recent interest in ethanol as a potential fuel or fuel supplement has stimulated research into various aspects of the fermentation process. Techniques such as continuous fermentation, vacuum distillation and methods for cell recycle have been investigated (6,10,11), but another important area being studied is that of strain selection and improvement for maximum productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arcuri, E.J., R. Mark, and S.E. Shumate II,Ethanol production by immobilized cells of Zymomonas mobilis, Biotechnol. Lett, 2: 499–504 (1980).

    Google Scholar 

  2. Barker, B.T.P., and V.F. Hillier, Cider sickness, J. Agric. Sci., 5: 67–85 (1912).

    Article  Google Scholar 

  3. Belaich, J.P., and J.C. Senez, Influence of aeration and of pantothenate on growth yields of Zymomonas mobilis, J. Bacteriol. 89: 1195–1200 (1965).

    Google Scholar 

  4. Beringer, J.E., J.L. Beynon, A.V. Buchanan-Wollaston, and A.W.B. Johnston, Transfer of the drug-resistance transposon Tn5 to Rhizobium, Nature 276: 633–634 (1978).

    Article  Google Scholar 

  5. Birnboim, H.C., and J. Doly, A rapid alkaline extraction procedure for screening recombinant plasmid DNA, Nucleic Acids Res., 7: 1513–1523 (1979).

    Article  Google Scholar 

  6. Cysewski, G.R., and C.R. Wilke, Rapid ethanol fermentations using vacuum and cell recycle, Biotechnol. Bioeng., 19: 1125–1143 (1977).

    Article  Google Scholar 

  7. Dadds, M.J.S., P.A. Martin, and J.G. Carr, The doubtful status of the species Zymomonas anaerobia and Z. mobilis, J. Appl. Bacteriol., 36: 531–539 (1973).

    Article  Google Scholar 

  8. Dawes, E.A., D.W. Ribbons, and P.J. Large, The route of ethanol formation in Zymomonas mobilis, Biochem. J., 98: 795–803 (1966).

    Google Scholar 

  9. Dawes, E.A., D.W. Ribbons, and D.A. Rees, Sucrose utilization by Zymomonas mobilis: formation of a levan, Biochem. J., 98: 804–812 (1966).

    Google Scholar 

  10. del Rosario, E.J., K.J. Lee, and P.L. Rogers, Kinetics of alcohol fermentation at high yeast levels, Biotechnol. Bioeng., 21: 1477–1482 (1979).

    Article  Google Scholar 

  11. Ghose, T.K., and R.D. Tyagi, Rapid ethanol fermentation of cellulose hydrolysate. I. Batch vs. continuous systems, Biotechnol. Bioeng., 21: 1387–1400 (1979).

    Article  Google Scholar 

  12. Gibbs, M., and R.D. DeMoss, Ethanol formation in Pseudomonas lindneri, Arch. Biochem. Biophys. 34: 478–479 (1951).

    Article  Google Scholar 

  13. Gibbs, M., and R.D. DeMoss, Anaerobic dissimilation of C14-labelled glucose and fructose by Pseudomonas lindneri, J. Biol. Chem., 207: 689–694 (1954).

    Google Scholar 

  14. Grote, W., K.J. Lee, and P.L. Rogers, Continuous ethanol production by immobilized cells of Zymomonas mobilis, Biotechnol. Letter, 2: 481–486 (1980).

    Google Scholar 

  15. Lavers, B.H., P. Pang, C.R. Mackenzie, G.R. Lawford, J. Pik, and H.G. Lawford, Industrial alcohol production by high performance bacterial fermentation, Abstr. 6th Int. Ferment. Symp. p. 81 (1980).

    Google Scholar 

  16. Lee, K.J. D.E. Tribe, and P.L. Rogers, Ethanol production by Zymomonas mobilis in continuous culture at high glucose concentrations, Biotechnol. Letter, 1: 421–426 (1979).

    Google Scholar 

  17. Lee, K.J., M.L. Skotnicki, D.E. Tribe, and P.L. Rogers, Kinetic studies on a highly productive strain of Zymomonas mobilis, Biotechnol. Letter, 2: 339–344 (1980).

    Google Scholar 

  18. Lee, K.J., M. Lefebvre, D.E. Tribe, and P.L. Rogers, High productivity ethanol fermentations with Zymomonas mobilis using continuous cell recycle, Biotechnol. Letter, 2: 487–492 (1980).

    Google Scholar 

  19. Lee, K.J., M.L. Skotnicki, D.E. Tribe, and P.L. Rogers, The kinetics of ethanol production by Zymomonas mobilis on fructose and sucrose media, Biotechnol. Letter, in press (1981).

    Google Scholar 

  20. Lindner, P., Termobacterium mobile, ein mexikanisches Bakterium als neues Einsauerungsbakterium fur Rubenschnitzel, Z. Ver. Dsch. Zuckerind., 81: 25–36 (1931).

    Google Scholar 

  21. Macrina, F.L., D.J. Kopecko, K.R. Jones, D.J. Ayers, and S.M. McCowen, A multiple plasmid-containing Escherichia coli strain: convenient source of size reference plasmid molecules, Plasmid, 1: 417–420 (1978).

    Article  Google Scholar 

  22. Millis, N.F., A study of the cider sickness bacillus–a new variety of Zymomonas anaerobia, J. Gen. Microbiol. 15: 521–528 (1956).

    Google Scholar 

  23. Okafor, N., Microbiology of Nigerian palm wine with particular reference to bacteria, J. Appl. Bacteriol., 38: 81–88 (1975).

    Article  Google Scholar 

  24. Ribbons, D.W., E.A. Dawes, and D.A. Rees, Levan formation by Zymomonas mobilis, Biochem. J., 82: 45P (1962).

    Google Scholar 

  25. Roelofsen, P.A., De alkoholbacterie in arensap, Natuurwet. Tijdschr. Ned. Indie, 101: 274 (1941).

    Google Scholar 

  26. Rogers, P.L., K.J. Lee, and D.E. Tribe, Kinetics of alcohol production by Zymomonas mobilis at high sugar concentrations, Biotechnol. Letter, 1: 165–170 (1979).

    Google Scholar 

  27. Rogers, P.L. K.J. Lee, and D.E. Tribe, High productivity ethanol fermentations with Zymomonas mobilis, Process Biochem, 15 (6): 7–11 (1980).

    Google Scholar 

  28. Rose, D., Yeasts for molasses alcohol, Process Biochem, 11 (2): 10–12 (1976).

    Google Scholar 

  29. Skotnicki, M.L., D.E. Tribe, and P.L. Rogers, R-plasmid transfer in Zymomonas mobilis, Appl. Env. Microbiol, 40: 7–12 (1980).

    Google Scholar 

  30. Skotnicki, M.L., K.J. Lee, D.E. Tribe, and P.L. Rogers, Comparison of ethanol production by different Zymomonas strains, Appl. Env. Microbiol. 41: 889–893 (1981).

    Google Scholar 

  31. Swings, J., and J. DeLey, The biology of Zymomonas, Bacteriol. Rev. 41: 1–46 (1977).

    Google Scholar 

  32. Viikari, L., P. Nybergh, and M. Linko, Hydrolysis of cellulose by Trichoderma reesei enzymes and simultaneous production of ethanol by Zymomonas sp., Abstr. 6th Int. Ferm. Symp., p. 80 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Skotnicki, M.L., Lee, K.J., Tribe, D.E., Rogers, P.L. (1982). Genetic Alteration of Zymomonas Mobilis for Ethanol Production. In: Hollaender, A., DeMoss, R.D., Kaplan, S., Konisky, J., Savage, D., Wolfe, R.S. (eds) Genetic Engineering of Microorganisms for Chemicals. Basic Life Sciences. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4142-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4142-0_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4144-4

  • Online ISBN: 978-1-4684-4142-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics